Probing neutralizing-antibody responses against emerging measles viruses (MVs): immune selection of MV by H protein-specific antibodies? Free

Abstract

Measles virus (MV) infection and vaccination induce long-lasting immunity and neutralizing-antibody responses that are directed against the MV haemagglutinin (H) and the fusion (F) protein. A new MV genotype, D7, emerged recently in western Germany and rapidly replaced the long-term endemically circulating genotypes C2 and D6. Analysis of the H gene of C2, D6, D7 and vaccine viruses revealed uniform sequences for each genotype. Interestingly, a consistent exchange of seven distinct amino acids in the D7 H was observed when compared with residues shared between C2, D6 and vaccine viruses, and one exchange (D416→N) in the D7 H was associated with an additional -linked glycosylation. In contrast, the F gene is highly conserved between MVs of these genotypes. To test whether the D7 H protein escapes from antibody responses that were raised against earlier circulating or vaccine viruses, the neutralizing capacity of mAbs recognizing seven distinct domains on the H of an Edmonston-related MV was compared. The mAbs revealed a selective and complete loss of two neutralizing epitopes on the D7 H when compared with C2, D6 and vaccine viruses. To assess whether these alterations of the D7 H affect the neutralizing capacity of polyclonal B-cell responses, genotype-specific antisera were produced in cotton rats. However, no significant genotype-dependent difference was found. Likewise, human sera obtained from vaccinees (=7) and convalescents (=6) did not distinguish between the MV genotypes. Although the hypothesis of selection of D7 viruses by pre-existing neutralizing antibodies is compatible with the differing pattern of neutralizing epitopes on the H protein, it was not confirmed by the results of MV neutralization with polyclonal sera.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80467-0
2005-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860365.html?itemId=/content/journal/jgv/10.1099/vir.0.80467-0&mimeType=html&fmt=ahah

References

  1. Bouche F. B., Ertl O. T., Muller C. P. 2002; Neutralizing B cell response in measles. Viral Immunol 15:451–471 [CrossRef]
    [Google Scholar]
  2. Cattaneo R., Rose J. K. 1993; Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J Virol 67:1493–1502
    [Google Scholar]
  3. Damien B., Huiss S., Schneider F., Muller C. P. 1998; Susceptibility to asymptomatic secondary immune response against measles in late convalescent and vaccinated persons. J Med Virol 56:85–90 [CrossRef]
    [Google Scholar]
  4. Dörig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305 [CrossRef]
    [Google Scholar]
  5. Duarte E. A., Novella I. S., Weaver S. C. 7 other authors 1994; RNA virus quasispecies: significance for viral disease and epidemiology. Infect Agents Dis 3:201–214
    [Google Scholar]
  6. Edmonson M. B., Addiss D. G., McPherson J. T., Berg J. L., Circo S. R., Davis J. P. 1990; Mild measles and secondary vaccine failure during a sustained outbreak in a highly vaccinated population. JAMA 263:2467–2471 [CrossRef]
    [Google Scholar]
  7. Erlenhöfer C., Wurzer W. J., Löffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505 [CrossRef]
    [Google Scholar]
  8. Erlenhöfer C., Duprex W. P., Rima B. K., ter Meulen V., Schneider-Schaulies J. 2002; Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83:1431–1436
    [Google Scholar]
  9. Ertl O. T., Wenz D. C., Bouche F. B., Berbers G. A. M., Muller C. P. 2003; Immunodominant domains of the Measles virus hemagglutinin protein eliciting a neutralizing human B cell response. Arch Virol 148:2195–2206 [CrossRef]
    [Google Scholar]
  10. Fayolle J., Verrier B., Buckland R., Wild T. F. 1999; Characterization of a natural mutation in an antigenic site on the fusion protein of measles virus that is involved in neutralization. J Virol 73:787–790
    [Google Scholar]
  11. Fournier P., Ammerlaan W., Ziegler D. 7 other authors 1996; Differential activation of T cells by antibody-modulated processing of the flanking sequences of class II-restricted peptides. Int Immunol 8:1441–1451 [CrossRef]
    [Google Scholar]
  12. Fournier P., Brons N. H. C., Berbers G. A. M., Wiesmüller K. H., Fleckenstein B. T., Schneider F., Jung G., Muller C. P. 1997; Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fusion proteins protect against measles encephalitis. J Gen Virol 78:1295–1302
    [Google Scholar]
  13. Giraudon P., Wild T. F. 1981; Monoclonal antibodies against measles virus. J Gen Virol 54:325–332 [CrossRef]
    [Google Scholar]
  14. Giraudon P., Wild T. F. 1985; Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 144:46–58 [CrossRef]
    [Google Scholar]
  15. Hay A. J., Gregory V., Douglas A. R., Lin Y. P. 2001; The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356:1861–1870 [CrossRef]
    [Google Scholar]
  16. Hengel H., Eßlinger C., Pool J., Goulmy E., Koszinowski U. H. 1995; Cytokines restore MHC class I complex formation and control antigen presentation in human cytomegalovirus-infected cells. J Gen Virol 76:2987–2997 [CrossRef]
    [Google Scholar]
  17. Hengel H., Koopmann J. O., Flohr T., Muranyi W., Goulmy E., Hammerling G. J., Koszinowski U. H., Momburg F. 1997; A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6:623–632 [CrossRef]
    [Google Scholar]
  18. Holland J. J., de la Torre J. C., Steinhauer D. A., Clarke D., Duarte E., Domingo E. 1989; Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions. J Virol 63:5030–5036
    [Google Scholar]
  19. Hu A., Sheshberadaran H., Norrby E., Kövamees J. 1993; Molecular characterization of epitopes on the measles virus hemagglutinin protein. Virology 192:351–354 [CrossRef]
    [Google Scholar]
  20. Hu A., Cattaneo R., Schwartz S., Norrby E. 1994; Role of N -linked oligosaccharide chains in the processing and antigenicity of measles virus haemagglutinin protein. J Gen Virol 75:1043–1052 [CrossRef]
    [Google Scholar]
  21. Jin L., Richards A., Brown D. W. G. 1996; Development of a dual target-PCR for detection and characterization of measles virus in clinical specimens. Mol Cell Probes 10:191–200 [CrossRef]
    [Google Scholar]
  22. Johnston I. C. D., ter Meulen V., Schneider-Schaulies J., Schneider-Schaulies S. 1999; A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. J Virol 73:6903–6915
    [Google Scholar]
  23. Klagge I. M., ter Meulen V., Schneider-Schaulies S. 2000; Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur J Immunol 30:2741–2750 [CrossRef]
    [Google Scholar]
  24. Klingele M., Hartter H. K., Adu F., Ammerlaan W., Ikusika W., Muller C. P. 2000; Resistance of recent measles virus wild-type isolates to antibody-mediated neutralization by vaccinees with antibody. J Med Virol 62:91–98 [CrossRef]
    [Google Scholar]
  25. Kubo H., Iritani N., Seto Y. 2003; Co-circulation of two genotypes of measles virus and mutual change of the prevailing genotypes every few years in Osaka, Japan. J Med Virol 69:273–278 [CrossRef]
    [Google Scholar]
  26. Langedijk J. P. M., Daus F. J., van Oirschot J. T. 1997; Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J Virol 71:6155–6167
    [Google Scholar]
  27. Liebert U. G., Flanagan S. G., Löffler S., Baczko K., ter Meulen V., Rima B. K. 1994; Antigenic determinants of measles virus hemagglutinin associated with neurovirulence. J Virol 68:1486–1493
    [Google Scholar]
  28. Moeller K., Duffy I., Duprex P. 7 other authors 2001; Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 75:7612–7620 [CrossRef]
    [Google Scholar]
  29. Muller C. P. 2001; Measles elimination: old and new challenges?. Vaccine 19:2258–2261 [CrossRef]
    [Google Scholar]
  30. Muller C. P., Huiss S., Schneider F. 1996; Secondary immune responses in parents of children with recent measles. Lancet 348:1379–1380
    [Google Scholar]
  31. Naniche D., Varior-Krishnan F., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032
    [Google Scholar]
  32. Niewiesk S. 1999; Cotton rats ( Sigmodon hispidus ): an animal model to study the pathogenesis of measles virus infection. Immunol Lett 65:47–50 [CrossRef]
    [Google Scholar]
  33. Niewiesk S., Eisenhuth I., Fooks A., Clegg J. C. S., Schnorr J.-J., Schneider-Schaulies S., ter Meulen V. 1997; Measles virus-induced immune suppression in the cotton rat ( Sigmodon hispidus ) model depends on viral glycoproteins. J Virol 71:7214–7219
    [Google Scholar]
  34. Niewiesk S., Götzelmann M., ter Meulen V. 2000; Selective in vivo suppression of T lymphocyte responses in experimental measles virus infection. Proc Natl Acad Sci U S A 97:4251–4255 [CrossRef]
    [Google Scholar]
  35. Ohgimoto S., Ohgimoto K., Niewiesk S. 7 other authors 2001; The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro . J Gen Virol 82:1835–1844
    [Google Scholar]
  36. Parks C. L., Lerch R. A., Walpita P., Wang H.-P., Sidhu M. S., Udem S. A. 2001; Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 75:910–920 [CrossRef]
    [Google Scholar]
  37. Pederson I. R., Mordhorst C. H., Glikmann G., von Magnus H. 1989; Subclinical measles infection in vaccinated seropositive individuals in arctic Greenland. Vaccine 7:345–348 [CrossRef]
    [Google Scholar]
  38. Pfeuffer J., Püschel K., ter Meulen V., Schneider-Schaulies J., Niewiesk S. 2003; Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model ( Sigmodon hispidus ). J Virol 77:150–158 [CrossRef]
    [Google Scholar]
  39. Pütz M. M., Hoebeke J., Ammerlaan W., Schneider S., Muller C. P. 2003; Functional fine-mapping and molecular modeling of a conserved loop epitope of the measles virus hemagglutinin protein. Eur J Biochem 270:1515–1527 [CrossRef]
    [Google Scholar]
  40. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188:135–142 [CrossRef]
    [Google Scholar]
  41. Rota J. S., Wang Z.-D., Rota P. A., Bellini W. J. 1994; Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res 31:317–330 [CrossRef]
    [Google Scholar]
  42. Saito H., Nakagomi O., Morita M. 1995; Molecular identification of two distinct hemagglutinin types of measles virus by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Mol Cell Probes 9:1–8 [CrossRef]
    [Google Scholar]
  43. Santibanez S., Heider A., Gerike E., Agafonov A., Schreier E. 1999; Genotyping of measles virus isolates from Central Europe and Russia. J Med Virol 58:313–320 [CrossRef]
    [Google Scholar]
  44. Santibanez S., Tischer A., Heider A., Siedler A., Hengel H. 2002; Rapid replacement of endemic measles virus genotypes. J Gen Virol 83:2699–2708
    [Google Scholar]
  45. Schneider-Schaulies J., ter Meulen V., Schneider-Schaulies S. 2001; Measles virus interactions with cellular receptors: consequences for viral pathogenesis. J Neurovirol 7:391–399 [CrossRef]
    [Google Scholar]
  46. Schrag S. J., Rota P. A., Bellini W. J. 1999; Spontaneous mutation rate of measles virus: direct estimation based on mutations conferring monoclonal antibody resistance. J Virol 73:51–54
    [Google Scholar]
  47. Schulze I. T. 1997; Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis 176 (Suppl. 1):S24–S28 [CrossRef]
    [Google Scholar]
  48. Sinitsyna O. A., Khudaverdyan O. E., Steinberg L. L., Nagieva F. G., Lotte V. D., Dorofeeva L. V., Rozina E. E., Boriskin Yu. S. 1990; Further-attenuated measles vaccine: virus passages affect viral surface protein expression, immunogenicity and histopathology pattern in vivo . Res Virol 141:517–531 [CrossRef]
    [Google Scholar]
  49. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C. 1984; A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A 81:1779–1783 [CrossRef]
    [Google Scholar]
  50. Stern L. B.-L., Greenberg M., Gershoni J. M., Rozenblatt S. 1995; The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis. J Virol 69:1661–1668
    [Google Scholar]
  51. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897 [CrossRef]
    [Google Scholar]
  52. Tischer A., Santibanez S., Siedler A., Heider A., Hengel H. 2004; Laboratory investigations are indispensable to monitor the progress of measles elimination – results of the German Measles Sentinel 1999–2003. J Clin Virol 31:165–178 [CrossRef]
    [Google Scholar]
  53. van Binnendijk R. S., van den Hof S., van den Kerkhof H., Kohl R. H. G., Woonink F., Berbers G. A. M., Conyn-van Spaendonck M. A. E., Kimman T. G. 2003; Evaluation of serological and virological tests in the diagnosis of clinical and subclinical measles virus infections during an outbreak of measles in the Netherlands. J Infect Dis 188:898–903 [CrossRef]
    [Google Scholar]
  54. Vardas E., Kreis S. 1999; Isolation of measles virus from a naturally-immune, asymptomatically re-infected individual. J Clin Virol 13:173–179 [CrossRef]
    [Google Scholar]
  55. Varsanyi T. M., Morein B., Löve A., Norrby E. 1987; Protection against lethal measles virus infection in mice by immune-stimulating complexes containing the hemagglutinin or fusion protein. J Virol 61:3896–3901
    [Google Scholar]
  56. Vongpunsawad S., Oezgun N., Braun W., Cattaneo R. 2004; Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78:302–313 [CrossRef]
    [Google Scholar]
  57. WHO 2003; Update of the nomenclature for describing the genetic characteristics of wild-type measles viruses: new genotypes and reference strains. Wkly Epidemiol Rec 78:229–232
    [Google Scholar]
  58. Wild T. F., Buckland R. 1995; Functional aspects of envelope-associated measles virus proteins. Curr Top Microbiol Immunol 191:51–64
    [Google Scholar]
  59. Wild T. F., Malvoisin E., Buckland R. 1991; Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol 72:439–442 [CrossRef]
    [Google Scholar]
  60. Ziegler D., Fournier P., Berbers G. A. H. 7 other authors 1996; Protection against measles virus encephalitis by monoclonal antibodies binding to a cystine loop domain of the H protein mimicked by peptides which are not recognized by maternal antibodies. J Gen Virol 77:2479–2489 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80467-0
Loading
/content/journal/jgv/10.1099/vir.0.80467-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed