1887

Abstract

Measles virus (MV) infection and vaccination induce long-lasting immunity and neutralizing-antibody responses that are directed against the MV haemagglutinin (H) and the fusion (F) protein. A new MV genotype, D7, emerged recently in western Germany and rapidly replaced the long-term endemically circulating genotypes C2 and D6. Analysis of the H gene of C2, D6, D7 and vaccine viruses revealed uniform sequences for each genotype. Interestingly, a consistent exchange of seven distinct amino acids in the D7 H was observed when compared with residues shared between C2, D6 and vaccine viruses, and one exchange (D416→N) in the D7 H was associated with an additional -linked glycosylation. In contrast, the F gene is highly conserved between MVs of these genotypes. To test whether the D7 H protein escapes from antibody responses that were raised against earlier circulating or vaccine viruses, the neutralizing capacity of mAbs recognizing seven distinct domains on the H of an Edmonston-related MV was compared. The mAbs revealed a selective and complete loss of two neutralizing epitopes on the D7 H when compared with C2, D6 and vaccine viruses. To assess whether these alterations of the D7 H affect the neutralizing capacity of polyclonal B-cell responses, genotype-specific antisera were produced in cotton rats. However, no significant genotype-dependent difference was found. Likewise, human sera obtained from vaccinees (=7) and convalescents (=6) did not distinguish between the MV genotypes. Although the hypothesis of selection of D7 viruses by pre-existing neutralizing antibodies is compatible with the differing pattern of neutralizing epitopes on the H protein, it was not confirmed by the results of MV neutralization with polyclonal sera.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80467-0
2005-02-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860365.html?itemId=/content/journal/jgv/10.1099/vir.0.80467-0&mimeType=html&fmt=ahah

References

  1. Bouche, F. B., Ertl, O. T. & Muller, C. P. ( 2002; ). Neutralizing B cell response in measles. Viral Immunol 15, 451–471.[CrossRef]
    [Google Scholar]
  2. Cattaneo, R. & Rose, J. K. ( 1993; ). Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J Virol 67, 1493–1502.
    [Google Scholar]
  3. Damien, B., Huiss, S., Schneider, F. & Muller, C. P. ( 1998; ). Susceptibility to asymptomatic secondary immune response against measles in late convalescent and vaccinated persons. J Med Virol 56, 85–90.[CrossRef]
    [Google Scholar]
  4. Dörig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305.[CrossRef]
    [Google Scholar]
  5. Duarte, E. A., Novella, I. S., Weaver, S. C. & 7 other authors ( 1994; ). RNA virus quasispecies: significance for viral disease and epidemiology. Infect Agents Dis 3, 201–214.
    [Google Scholar]
  6. Edmonson, M. B., Addiss, D. G., McPherson, J. T., Berg, J. L., Circo, S. R. & Davis, J. P. ( 1990; ). Mild measles and secondary vaccine failure during a sustained outbreak in a highly vaccinated population. JAMA 263, 2467–2471.[CrossRef]
    [Google Scholar]
  7. Erlenhöfer, C., Wurzer, W. J., Löffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75, 4499–4505.[CrossRef]
    [Google Scholar]
  8. Erlenhöfer, C., Duprex, W. P., Rima, B. K., ter Meulen, V. & Schneider-Schaulies, J. ( 2002; ). Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83, 1431–1436.
    [Google Scholar]
  9. Ertl, O. T., Wenz, D. C., Bouche, F. B., Berbers, G. A. M. & Muller, C. P. ( 2003; ). Immunodominant domains of the Measles virus hemagglutinin protein eliciting a neutralizing human B cell response. Arch Virol 148, 2195–2206.[CrossRef]
    [Google Scholar]
  10. Fayolle, J., Verrier, B., Buckland, R. & Wild, T. F. ( 1999; ). Characterization of a natural mutation in an antigenic site on the fusion protein of measles virus that is involved in neutralization. J Virol 73, 787–790.
    [Google Scholar]
  11. Fournier, P., Ammerlaan, W., Ziegler, D. & 7 other authors ( 1996; ). Differential activation of T cells by antibody-modulated processing of the flanking sequences of class II-restricted peptides. Int Immunol 8, 1441–1451.[CrossRef]
    [Google Scholar]
  12. Fournier, P., Brons, N. H. C., Berbers, G. A. M., Wiesmüller, K. H., Fleckenstein, B. T., Schneider, F., Jung, G. & Muller, C. P. ( 1997; ). Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fusion proteins protect against measles encephalitis. J Gen Virol 78, 1295–1302.
    [Google Scholar]
  13. Giraudon, P. & Wild, T. F. ( 1981; ). Monoclonal antibodies against measles virus. J Gen Virol 54, 325–332.[CrossRef]
    [Google Scholar]
  14. Giraudon, P. & Wild, T. F. ( 1985; ). Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 144, 46–58.[CrossRef]
    [Google Scholar]
  15. Hay, A. J., Gregory, V., Douglas, A. R. & Lin, Y. P. ( 2001; ). The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356, 1861–1870.[CrossRef]
    [Google Scholar]
  16. Hengel, H., Eßlinger, C., Pool, J., Goulmy, E. & Koszinowski, U. H. ( 1995; ). Cytokines restore MHC class I complex formation and control antigen presentation in human cytomegalovirus-infected cells. J Gen Virol 76, 2987–2997.[CrossRef]
    [Google Scholar]
  17. Hengel, H., Koopmann, J. O., Flohr, T., Muranyi, W., Goulmy, E., Hammerling, G. J., Koszinowski, U. H. & Momburg, F. ( 1997; ). A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632.[CrossRef]
    [Google Scholar]
  18. Holland, J. J., de la Torre, J. C., Steinhauer, D. A., Clarke, D., Duarte, E. & Domingo, E. ( 1989; ). Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions. J Virol 63, 5030–5036.
    [Google Scholar]
  19. Hu, A., Sheshberadaran, H., Norrby, E. & Kövamees, J. ( 1993; ). Molecular characterization of epitopes on the measles virus hemagglutinin protein. Virology 192, 351–354.[CrossRef]
    [Google Scholar]
  20. Hu, A., Cattaneo, R., Schwartz, S. & Norrby, E. ( 1994; ). Role of N-linked oligosaccharide chains in the processing and antigenicity of measles virus haemagglutinin protein. J Gen Virol 75, 1043–1052.[CrossRef]
    [Google Scholar]
  21. Jin, L., Richards, A. & Brown, D. W. G. ( 1996; ). Development of a dual target-PCR for detection and characterization of measles virus in clinical specimens. Mol Cell Probes 10, 191–200.[CrossRef]
    [Google Scholar]
  22. Johnston, I. C. D., ter Meulen, V., Schneider-Schaulies, J. & Schneider-Schaulies, S. ( 1999; ). A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. J Virol 73, 6903–6915.
    [Google Scholar]
  23. Klagge, I. M., ter Meulen, V. & Schneider-Schaulies, S. ( 2000; ). Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur J Immunol 30, 2741–2750.[CrossRef]
    [Google Scholar]
  24. Klingele, M., Hartter, H. K., Adu, F., Ammerlaan, W., Ikusika, W. & Muller, C. P. ( 2000; ). Resistance of recent measles virus wild-type isolates to antibody-mediated neutralization by vaccinees with antibody. J Med Virol 62, 91–98.[CrossRef]
    [Google Scholar]
  25. Kubo, H., Iritani, N. & Seto, Y. ( 2003; ). Co-circulation of two genotypes of measles virus and mutual change of the prevailing genotypes every few years in Osaka, Japan. J Med Virol 69, 273–278.[CrossRef]
    [Google Scholar]
  26. Langedijk, J. P. M., Daus, F. J. & van Oirschot, J. T. ( 1997; ). Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J Virol 71, 6155–6167.
    [Google Scholar]
  27. Liebert, U. G., Flanagan, S. G., Löffler, S., Baczko, K., ter Meulen, V. & Rima, B. K. ( 1994; ). Antigenic determinants of measles virus hemagglutinin associated with neurovirulence. J Virol 68, 1486–1493.
    [Google Scholar]
  28. Moeller, K., Duffy, I., Duprex, P. & 7 other authors ( 2001; ). Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 75, 7612–7620.[CrossRef]
    [Google Scholar]
  29. Muller, C. P. ( 2001; ). Measles elimination: old and new challenges? Vaccine 19, 2258–2261.[CrossRef]
    [Google Scholar]
  30. Muller, C. P., Huiss, S. & Schneider, F. ( 1996; ). Secondary immune responses in parents of children with recent measles. Lancet 348, 1379–1380.
    [Google Scholar]
  31. Naniche, D., Varior-Krishnan, F., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67, 6025–6032.
    [Google Scholar]
  32. Niewiesk, S. ( 1999; ). Cotton rats (Sigmodon hispidus): an animal model to study the pathogenesis of measles virus infection. Immunol Lett 65, 47–50.[CrossRef]
    [Google Scholar]
  33. Niewiesk, S., Eisenhuth, I., Fooks, A., Clegg, J. C. S., Schnorr, J.-J., Schneider-Schaulies, S. & ter Meulen, V. ( 1997; ). Measles virus-induced immune suppression in the cotton rat (Sigmodon hispidus) model depends on viral glycoproteins. J Virol 71, 7214–7219.
    [Google Scholar]
  34. Niewiesk, S., Götzelmann, M. & ter Meulen, V. ( 2000; ). Selective in vivo suppression of T lymphocyte responses in experimental measles virus infection. Proc Natl Acad Sci U S A 97, 4251–4255.[CrossRef]
    [Google Scholar]
  35. Ohgimoto, S., Ohgimoto, K., Niewiesk, S. & 7 other authors ( 2001; ). The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. J Gen Virol 82, 1835–1844.
    [Google Scholar]
  36. Parks, C. L., Lerch, R. A., Walpita, P., Wang, H.-P., Sidhu, M. S. & Udem, S. A. ( 2001; ). Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 75, 910–920.[CrossRef]
    [Google Scholar]
  37. Pederson, I. R., Mordhorst, C. H., Glikmann, G. & von Magnus, H. ( 1989; ). Subclinical measles infection in vaccinated seropositive individuals in arctic Greenland. Vaccine 7, 345–348.[CrossRef]
    [Google Scholar]
  38. Pfeuffer, J., Püschel, K., ter Meulen, V., Schneider-Schaulies, J. & Niewiesk, S. ( 2003; ). Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model (Sigmodon hispidus). J Virol 77, 150–158.[CrossRef]
    [Google Scholar]
  39. Pütz, M. M., Hoebeke, J., Ammerlaan, W., Schneider, S. & Muller, C. P. ( 2003; ). Functional fine-mapping and molecular modeling of a conserved loop epitope of the measles virus hemagglutinin protein. Eur J Biochem 270, 1515–1527.[CrossRef]
    [Google Scholar]
  40. Rota, J. S., Hummel, K. B., Rota, P. A. & Bellini, W. J. ( 1992; ). Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188, 135–142.[CrossRef]
    [Google Scholar]
  41. Rota, J. S., Wang, Z.-D., Rota, P. A. & Bellini, W. J. ( 1994; ). Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res 31, 317–330.[CrossRef]
    [Google Scholar]
  42. Saito, H., Nakagomi, O. & Morita, M. ( 1995; ). Molecular identification of two distinct hemagglutinin types of measles virus by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Mol Cell Probes 9, 1–8.[CrossRef]
    [Google Scholar]
  43. Santibanez, S., Heider, A., Gerike, E., Agafonov, A. & Schreier, E. ( 1999; ). Genotyping of measles virus isolates from Central Europe and Russia. J Med Virol 58, 313–320.[CrossRef]
    [Google Scholar]
  44. Santibanez, S., Tischer, A., Heider, A., Siedler, A. & Hengel, H. ( 2002; ). Rapid replacement of endemic measles virus genotypes. J Gen Virol 83, 2699–2708.
    [Google Scholar]
  45. Schneider-Schaulies, J., ter Meulen, V. & Schneider-Schaulies, S. ( 2001; ). Measles virus interactions with cellular receptors: consequences for viral pathogenesis. J Neurovirol 7, 391–399.[CrossRef]
    [Google Scholar]
  46. Schrag, S. J., Rota, P. A. & Bellini, W. J. ( 1999; ). Spontaneous mutation rate of measles virus: direct estimation based on mutations conferring monoclonal antibody resistance. J Virol 73, 51–54.
    [Google Scholar]
  47. Schulze, I. T. ( 1997; ). Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis 176 (Suppl. 1), S24–S28.[CrossRef]
    [Google Scholar]
  48. Sinitsyna, O. A., Khudaverdyan, O. E., Steinberg, L. L., Nagieva, F. G., Lotte, V. D., Dorofeeva, L. V., Rozina, E. E. & Boriskin, Yu. S. ( 1990; ). Further-attenuated measles vaccine: virus passages affect viral surface protein expression, immunogenicity and histopathology pattern in vivo. Res Virol 141, 517–531.[CrossRef]
    [Google Scholar]
  49. Skehel, J. J., Stevens, D. J., Daniels, R. S., Douglas, A. R., Knossow, M., Wilson, I. A. & Wiley, D. C. ( 1984; ). A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A 81, 1779–1783.[CrossRef]
    [Google Scholar]
  50. Stern, L. B.-L., Greenberg, M., Gershoni, J. M. & Rozenblatt, S. ( 1995; ). The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis. J Virol 69, 1661–1668.
    [Google Scholar]
  51. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  52. Tischer, A., Santibanez, S., Siedler, A., Heider, A. & Hengel, H. ( 2004; ). Laboratory investigations are indispensable to monitor the progress of measles elimination – results of the German Measles Sentinel 1999–2003. J Clin Virol 31, 165–178.[CrossRef]
    [Google Scholar]
  53. van Binnendijk, R. S., van den Hof, S., van den Kerkhof, H., Kohl, R. H. G., Woonink, F., Berbers, G. A. M., Conyn-van Spaendonck, M. A. E. & Kimman, T. G. ( 2003; ). Evaluation of serological and virological tests in the diagnosis of clinical and subclinical measles virus infections during an outbreak of measles in the Netherlands. J Infect Dis 188, 898–903.[CrossRef]
    [Google Scholar]
  54. Vardas, E. & Kreis, S. ( 1999; ). Isolation of measles virus from a naturally-immune, asymptomatically re-infected individual. J Clin Virol 13, 173–179.[CrossRef]
    [Google Scholar]
  55. Varsanyi, T. M., Morein, B., Löve, A. & Norrby, E. ( 1987; ). Protection against lethal measles virus infection in mice by immune-stimulating complexes containing the hemagglutinin or fusion protein. J Virol 61, 3896–3901.
    [Google Scholar]
  56. Vongpunsawad, S., Oezgun, N., Braun, W. & Cattaneo, R. ( 2004; ). Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78, 302–313.[CrossRef]
    [Google Scholar]
  57. WHO ( 2003; ). Update of the nomenclature for describing the genetic characteristics of wild-type measles viruses: new genotypes and reference strains. Wkly Epidemiol Rec 78, 229–232.
    [Google Scholar]
  58. Wild, T. F. & Buckland, R. ( 1995; ). Functional aspects of envelope-associated measles virus proteins. Curr Top Microbiol Immunol 191, 51–64.
    [Google Scholar]
  59. Wild, T. F., Malvoisin, E. & Buckland, R. ( 1991; ). Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol 72, 439–442.[CrossRef]
    [Google Scholar]
  60. Ziegler, D., Fournier, P., Berbers, G. A. H. & 7 other authors ( 1996; ). Protection against measles virus encephalitis by monoclonal antibodies binding to a cystine loop domain of the H protein mimicked by peptides which are not recognized by maternal antibodies. J Gen Virol 77, 2479–2489.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80467-0
Loading
/content/journal/jgv/10.1099/vir.0.80467-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error