1887

Abstract

Alternative processing of human cytomegalovirus (HCMV) UL37 pre-mRNA predominantly produces the unspliced UL37 exon 1 (UL37x1) RNA and multiple, lower abundance, alternatively spliced UL37 RNAs. The relative abundance of UL37x1 unspliced RNA is surprising because it requires the favoured use of a polyadenylation signal within UL37 intron 1, just upstream of the UL37 exon 2 (UL37x2) acceptor. Here, it was shown that a downstream element (DSE) in UL37x2 strongly enhanced processing at the UL37x1 polyadenylation site, but did not influence UL37x1–x2 splicing. There was a potential binding site (UCUU) for polypyrimidine tract-binding protein (PTB) at the UL37x1 polyadenylation/cleavage site and its mutation to UGGG reduced both polyadenylation and splicing of UL37x1–x2 minigene pre-mRNA, suggesting a role in both RNA processing events. To determine whether lytic HCMV infection altered the balance of RNA processing factors, which bind to UL37 pre-mRNA elements, these were investigated in permissively infected primary and immortalized human diploid fibroblasts (HFFs) and epithelial cells. Induction of polyadenylation factors in HCMV-infected, serum-starved (G) HFFs was also investigated. Permissive HCMV infection consistently increased, albeit with different kinetics, the abundance of cleavage stimulation factor 64 (CstF-64) and PTB, and altered hypo-phosphorylated SF2 in different cell types. Moreover, the preponderance of UL37x1 RNA increased during infection and correlated with CstF-64 induction, whereas the complexity of the lower abundance UL37 spliced RNAs transiently increased following reduction of hypo-phosphorylated SF2. Collectively, multiple UL37 RNA polyadenylation elements and induced cellular factors in HCMV-infected cells strongly favoured the production of UL37x1 unspliced RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80450-0
2004-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/12/vir853541.html?itemId=/content/journal/jgv/10.1099/vir.0.80450-0&mimeType=html&fmt=ahah

References

  1. Adair, R., Liebisch, G. & Colberg-Poley, A. M. ( 2003; ). Complex alternative processing of the human cytomegalovirus (HCMV) UL37 pre-mRNA. J Gen Virol 84, 3353–3358.[CrossRef]
    [Google Scholar]
  2. Al-Barazi, H. O. & Colberg-Poley, A. M. ( 1996; ). The human cytomegalovirus UL37 immediate-early regulatory protein is an integral membrane N-glycoprotein which traffics through the endoplasmic reticulum and Golgi apparatus. J Virol 70, 7198–7208.
    [Google Scholar]
  3. Arnoult, D., Bartle, L. M., Skaletskaya, A., Poncet, D., Zamzami, N., Park, P. U., Sharpe, J., Youle, R. J. & Goldmacher, V. S. ( 2004; ). Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Natl Acad Sci U S A 101, 7988–7993.[CrossRef]
    [Google Scholar]
  4. Awasthi, S., Isler, J. A. & Alwine, J. E. ( 2004; ). Analysis of splice variants of the immediate-early 1 region of human cytomegalovirus. J Virol 78, 8191–8200.[CrossRef]
    [Google Scholar]
  5. Back, S. H., Kim, Y. K., Kim, W. J., Cho, S., Oh, H. R., Kim, J.-E. & Jang, S. K. ( 2002a; ). Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3Cpro. J Virol 76, 2529–2542.[CrossRef]
    [Google Scholar]
  6. Back, S. H., Shin, S. & Jang, S. K. ( 2002b; ). Polypyrimidine tract-binding proteins are cleaved by caspase-3 during apoptosis. J Biol Chem 277, 27200–27209.[CrossRef]
    [Google Scholar]
  7. Borst, E.-M., Hahn, G., Koszinowski, U. H. & Messerle, M. ( 1999; ). Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 73, 8320–8329.
    [Google Scholar]
  8. Bothwell, A. L. M., Ballard, D. W., Philbrick, W. M., Lindwall, G., Maher, S. E., Bridgett, M. M., Jamison, S. F. & Garcia-Blanco, M. A. ( 1991; ). Murine polypyrimidine tract binding protein. Purification, cloning and mapping of the RNA binding domain. J Biol Chem 266, 24657–24663.
    [Google Scholar]
  9. Bresnahan, W. A., Hultman, G. E. & Shenk, T. ( 2000; ). Replication of wild-type and mutant human cytomegalovirus in life-extended human diploid fibroblasts. J Virol 74, 10816–10818.[CrossRef]
    [Google Scholar]
  10. Castelo-Branco, P., Furger, A., Wollerton, M., Smith, C., Moreira, A. & Proudfoot, N. ( 2004; ). Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol 24, 4174–4183.[CrossRef]
    [Google Scholar]
  11. Chen, F., MacDonald, C. C. & Wilusz, J. ( 1995; ). Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res 23, 2614–2620.[CrossRef]
    [Google Scholar]
  12. Chou, M. Y., Underwood, J. G., Nikolic, J., Luu, M. H. & Black, D. L. ( 2000; ). Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol Cell 5, 949–957.[CrossRef]
    [Google Scholar]
  13. Coats, D. K., Demmler, G. J., Paysse, E. A., Du, L. T. & Libby, C. ( 2000; ). Ophthalmologic findings in children with congenital cytomegalovirus infection. J AAPOS 4, 110–116.[CrossRef]
    [Google Scholar]
  14. Colberg-Poley, A. M. & Santomenna, L. D. ( 1988; ). Selective induction of chromosomal gene expression by human cytomegalovirus. Virology 166, 217–228.[CrossRef]
    [Google Scholar]
  15. Colberg-Poley, A. M., Patel, M. B., Erezo, D. P. P. & Slater, J. E. ( 2000; ). Human cytomegalovirus immediate early regulatory proteins traffic through the secretory apparatus and to mitochondria. J Gen Virol 81, 1779–1789.
    [Google Scholar]
  16. Detrick, B., Rhame, J., Wang, Y., Nagineni, C. N. & Hooks, J. J. ( 1996; ). Cytomegalovirus replication in human retinal pigment epithelial cells. Altered expression of viral early proteins. Invest Ophthalmol Vis Sci 37, 814–825.
    [Google Scholar]
  17. Dunn, W., Chou, C., Li, H., Hai, R., Patterson, D., Stolc, V., Zhu, H. & Liu, F. ( 2003; ). Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100, 14223–14228.[CrossRef]
    [Google Scholar]
  18. Furth, P. A., Choe, W. T., Rex, J. H., Byrne, J. C. & Baker, C. C. ( 1994; ). Sequences homologous to 5′ splice sites are required for the inhibitory activity of papillomavirus late 3′ untranslated regions. Mol Cell Biol 14, 5278–5289.
    [Google Scholar]
  19. Gil, A. & Proudfoot, N. J. ( 1987; ). Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell 49, 399–406.[CrossRef]
    [Google Scholar]
  20. Gil, A., Sharp, P. A., Jamison, S. F. & Garcia-Blanco, M. A. ( 1991; ). Characterization of cDNAs encoding the polypyrimidine tract binding protein. Genes Dev 5, 1224–1236.[CrossRef]
    [Google Scholar]
  21. Goldmacher, V. S., Bartle, L. M., Skaletskaya, A. & 10 other authors ( 1999; ). A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to bcl-2. Proc Natl Acad Sci U S A 96, 12536–12541.[CrossRef]
    [Google Scholar]
  22. Gooding, C., Roberts, G. C., Moreau, G., Nadal Ginard, B. & Smith, C. W. J. ( 1994; ). Smooth muscle-specific switching of alpha-tropomyosin mutually exclusive exon selection by specific inhibition of the strong default exon. EMBO J 13, 3861–3872.
    [Google Scholar]
  23. Gooding, C., Kemp, P. & Smith, C. W. J. ( 2003; ). A novel polypyrimidine tract binding protein paralog expressed in smooth muscle cells. J Biol Chem 278, 15201–15207.[CrossRef]
    [Google Scholar]
  24. Graveley, B. R. ( 2000; ). Sorting out the complexity of SR protein functions. RNA 6, 1197–1211.[CrossRef]
    [Google Scholar]
  25. Gunderson, S. I., Polycarpou-Schwarz, M. & Mattaj, I. W. ( 1998; ). U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell 1, 255–264.[CrossRef]
    [Google Scholar]
  26. Hayajneh, W. A., Colberg-Poley, A. M., Skaletskaya, A., Bartle, L. M., Lesperance, M. M., Contopoulos-Ioannidis, D. G., Kedersha, N. L. & Goldmacher, V. S. ( 2001a; ). The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains. Virology 279, 233–240.[CrossRef]
    [Google Scholar]
  27. Hayajneh, W. A., Contopoulos-Ioannidis, D. G., Lesperance, M. M., Venegas, A. & Colberg-Poley, A. M. ( 2001b; ). The carboxyl terminus of the human cytomegalovirus UL37 immediate-early glycoprotein is conserved in primary strains and is important for transactivation. J Gen Virol 82, 1569–1579.
    [Google Scholar]
  28. Huang, T.-S., Nilsson, C. E., Punga, T. & Akusjarvi, G. ( 2002; ). Functional inactivation of the SR family of splicing factors during a vaccinia virus infection. EMBO Rep 3, 1088–1093.[CrossRef]
    [Google Scholar]
  29. Jamison, S. F., Pasman, Z., Wang, J., Will, C., Lührmann, R., Manley, J. L. & Garcia-Blanco, M. A. ( 1995; ). U1 snRNP-ASF/SF2 interaction and 5′ splice site recognition: characterization of required elements. Nucleic Acids Res 23, 3260–3267.[CrossRef]
    [Google Scholar]
  30. Kanopka, A., Muhlemann, O. & Akusjarvi, G. ( 1996; ). Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381, 535–538.[CrossRef]
    [Google Scholar]
  31. Kanopka, A., Muhlemann, O., Petersen-Mahrt, S., Estmer, C., Ohrmalm, C. & Akusjarvi, G. ( 1998; ). Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393, 185–187.[CrossRef]
    [Google Scholar]
  32. Kouzarides, T., Bankier, A. T., Satchwell, S. C., Preddy, E. & Barrell, B. G. ( 1988; ). An immediate early gene of human cytomegalovirus encodes a potential membrane glycoprotein. Virology 165, 151–164.[CrossRef]
    [Google Scholar]
  33. Lee, M., Xiao, J., Haghjoo, E., Zhan, X., Abenes, G., Tuong, T., Dunn, W. & Liu, F. ( 2000; ). Murine cytomegalovirus containing a mutation at open reading frame M37 is severely attenuated in growth and virulence in vivo. J Virol 74, 11099–11107.[CrossRef]
    [Google Scholar]
  34. Liu, X., Mayeda, A., Tao, M. & Zheng, Z.-M. ( 2003; ). Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3′ splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway. J Virol 77, 2105–2115.[CrossRef]
    [Google Scholar]
  35. MacDonald, C., Wilusz, J. & Shenk, T. ( 1994; ). The 64-kilodalton subunit of CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 14, 6647–6654.
    [Google Scholar]
  36. Markovtsov, V., Nikolic, J. M., Goldman, J. A., Turck, C. W., Chou, M.-Y. & Black, D. L. ( 2000; ). Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 20, 7463–7479.[CrossRef]
    [Google Scholar]
  37. Mavinakere, M. S. & Colberg-Poley, A. M. ( 2004a; ). Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Gen Virol 85, 323–329.[CrossRef]
    [Google Scholar]
  38. Mavinakere, M. S. & Colberg-Poley, A. M. ( 2004b; ). Internal cleavage of the human cytomegalovirus UL37 immediate early glycoprotein and divergent trafficking of its proteolytic fragments. J Gen Virol 85, 1989–1994.[CrossRef]
    [Google Scholar]
  39. Moreira, A., Takagaki, Y., Brackenridge, S., Wollerton, M., Manley, J. L. & Proudfoot, N. J. ( 1998; ). The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev 12, 2522–2534.[CrossRef]
    [Google Scholar]
  40. Murthy, K. G. & Manley, J. L. ( 1992; ). Characterization of a multisubunit cleavage polyadenylation specificity factor from calf thymus. J Biol Chem 267, 14804–14811.
    [Google Scholar]
  41. Niwa, M., MacDonald, C. C. & Berget, S. M. ( 1992; ). Are vertebrate exons scanned during splice-site selection? Nature 360, 277–280.[CrossRef]
    [Google Scholar]
  42. Pérez, I., Lin, C. H., McAfee, J. G. & Patton, J. G. ( 1997; ). Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA 3, 764–778.
    [Google Scholar]
  43. Pérez Cañadillas, J. M. & Varani, G. ( 2003; ). Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J 22, 2821–2830.[CrossRef]
    [Google Scholar]
  44. Poncet, D., Larochette, N., Pauleau, A.-L. & 12 other authors ( 2004; ). An anti-apoptotic viral protein that recruits Bax to mitochondria. J Biol Chem 279, 22605–22614.[CrossRef]
    [Google Scholar]
  45. Rambhatla, L., Chiu, C.-P., Glickman, R. D. & Rowe-Rendelman, C. ( 2002; ). In vitro differentiation capacity of telomerase immortalized human RPE cells. Invest Ophthalmol Vis Sci 43, 1622–1630.
    [Google Scholar]
  46. Ryan, K., Calvo, O. & Manley, J. L. ( 2004; ). Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 10, 565–573.[CrossRef]
    [Google Scholar]
  47. Sciabica, K. S., Dai, Q. J. & Sandri-Goldin, R. M. ( 2003; ). ICP27 interacts with SRPK1 to mediate HSV splicing inhibition by altering SR protein phosphorylation. EMBO J 22, 1608–1619.[CrossRef]
    [Google Scholar]
  48. Shen, H., Kan, J. L. C., Ghigna, C., Biamonti, G. & Green, M. R. ( 2004; ). A single polypyrimidine tract protein (PTB) binding site mediates splicing inhibition at mouse IgM exons M1 and M2. RNA 10, 787–794.[CrossRef]
    [Google Scholar]
  49. Staknis, D. & Reed, R. ( 1994; ). SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol Cell Biol 14, 7670–7682.
    [Google Scholar]
  50. Su, Y., Testaverde, J. R., Davis, C. N., Hayajneh, W. A., Adair, R. & Colberg-Poley, A. M. ( 2003a; ). Human cytomegalovirus UL37 immediate early target minigene RNAs are accurately spliced and polyadenylated. J Gen Virol 84, 29–39.[CrossRef]
    [Google Scholar]
  51. Su, Y., Adair, R., Davis, C. N., DiFronzo, N. L. & Colberg-Poley, A. M. ( 2003b; ). Convergence of RNA cis elements and cellular polyadenylation factors in the regulation of human cytomegalovirus UL37 exon 1 unspliced RNA production. J Virol 77, 12729–12741.[CrossRef]
    [Google Scholar]
  52. Takagaki, Y. & Manley, J. L. ( 1997; ). RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 17, 3907–3914.
    [Google Scholar]
  53. Tenney, D. J. & Colberg-Poley, A. M. ( 1991; ). Expression of the human cytomegalovirus UL36–38 immediate early region during permissive infection. Virology 182, 199–210.[CrossRef]
    [Google Scholar]
  54. Venkatramana, M., Ray, P. S., Chadda, A. & Das, S. ( 2003; ). A 25 kDa cleavage product of polypyrimidine tract binding protein (PTB) present in mouse tissues prevents PTB binding to the 5′ untranslated region and inhibits translation of hepatitis A virus RNA. Virus Res 98, 141–149.[CrossRef]
    [Google Scholar]
  55. Wagner, E. J. & Garcia-Blanco, M. A. ( 2002; ). RNAi-mediated PTB depletion leads to enhanced exon definition. Mol Cell 10, 943–949.[CrossRef]
    [Google Scholar]
  56. Wang, X., Huong, S.-M., Chiu, M. L., Raab-Traub, N. & Huang, E.-S. ( 2003; ). Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461.[CrossRef]
    [Google Scholar]
  57. Xiao, S.-H. & Manley, J. L. ( 1998; ). Phosphorylation–dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J 17, 6359–6367.[CrossRef]
    [Google Scholar]
  58. Yu, D., Silva, M. C. & Shenk, T. ( 2003; ). Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc Natl Acad Sci U S A 100, 12396–12401.[CrossRef]
    [Google Scholar]
  59. Zarkower, D. & Wickens, M. ( 1988; ). A functionally redundant downstream sequence in SV40 late pre-mRNA is required for mRNA 3′ end formation and for assembly of a precleavage complex in vitro. J Biol Chem 263, 5780–5788.
    [Google Scholar]
  60. Zhao, J., Hyman, L. & Moore, C. ( 1999; ). Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63, 405–445.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80450-0
Loading
/content/journal/jgv/10.1099/vir.0.80450-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error