1887

Abstract

Phylogenetic analysis of the capsid protein VP1 coding sequences of all 101 human rhinovirus (HRV) prototype strains revealed two major genetic clusters, similar to that of the previously reported VP4/VP2 coding sequences, representing the established two species, (HRV-A) and (HRV-B). Pairwise nucleotide identities varied from 61 to 98 % within and from 46 to 55 % between the two HRV species. Interserotypic sequence identities in both HRV species were more variable than those within any (HEV) species in the same family. This means that unequivocal serotype identification by VP1 sequence analysis used for HEV strains may not always be possible for HRV isolates. On the other hand, a comprehensive insight into the relationships between VP1 and partial 2A sequences of HRV and HEV revealed a genus-like situation. Distribution of pairwise nucleotide identity values between these genera varied from 41 to 54 % in the VP1 coding region, similar to those between heterologous members of the two HRV species. Alignment of the deduced amino acid sequences revealed more fully conserved amino acid residues between HRV-B and polioviruses than between the two HRV species. In phylogenetic trees, where all HRVs and representatives from all HEV species were included, the two HRV species did not cluster together but behaved like members of the same genus as the HEVs. In conclusion, from a phylogenetic point of view, there are no good reasons to keep these two human picornavirus genera taxonomically separated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80445-0
2005-03-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860697.html?itemId=/content/journal/jgv/10.1099/vir.0.80445-0&mimeType=html&fmt=ahah

References

  1. Andries, K., Dewindt, B., Snoeks, J., Wouters, L., Moereels, H., Lewi, P. J. & Janssen, P. A. ( 1990; ). Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J Virol 64, 1117–1123.
    [Google Scholar]
  2. Blomqvist, S., Savolainen, C., Raman, L., Roivainen, M. & Hovi, T. ( 2002; ). Human rhinovirus 87 and enterovirus 68 represent a unique serotype with rhinovirus and enterovirus features. J Clin Microbiol 40, 4218–4223.[CrossRef]
    [Google Scholar]
  3. Brown, B., Oberste, M. S., Maher, K. & Pallansch, M. A. ( 2003; ). Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 77, 8973–8984.[CrossRef]
    [Google Scholar]
  4. Cooney, M. K., Fox, J. P. & Kenny, G. E. ( 1982; ). Antigenic groupings of 90 rhinovirus serotypes. Infect Immun 37, 642–647.
    [Google Scholar]
  5. Couch, R. B. ( 1996; ). Rhinoviruses. In Fields Virology, pp. 713–733. Edited by D. M. Knipe, B. N. Fields & P. E. Howley. Philadelphia: Lippincott-Raven Publishers.
  6. Duechler, M., Skern, T., Sommergruber, W., Neubauer, C., Gruendler, P., Fogy, I., Blaas, D. & Kuechler, E. ( 1987; ). Evolutionary relationships within the human rhinovirus genus: comparison of serotypes 89, 2, and 14. Proc Natl Acad Sci U S A 84, 2605–2609.[CrossRef]
    [Google Scholar]
  7. Gradi, A., Svitkin, Y. V., Sommergruber, W., Imataka, H., Morino, S., Skern, T. & Sonenberg, N. ( 2003; ). Human rhinovirus 2A proteinase cleavage sites in eukaryotic initiation factors (eIF) 4GI and eIF4GII are different. J Virol 77, 5026–5029.[CrossRef]
    [Google Scholar]
  8. Horsnell, C., Gama, R. E., Hughes, P. J. & Stanway, G. ( 1995; ). Molecular relationships between 21 human rhinovirus serotypes. J Gen Virol 76, 2549–2555.[CrossRef]
    [Google Scholar]
  9. Hughes, P. J., North, C., Jellis, C. H., Minor, P. D. & Stanway, G. ( 1988; ). The nucleotide sequence of human rhinovirus 1B: molecular relationships within the rhinovirus genus. J Gen Virol 69, 49–58.[CrossRef]
    [Google Scholar]
  10. Kew, O. M., Sutter, R. W., Nottay, B. K., McDonough, M. J., Prevots, D. R., Quick, L. & Pallansch, M. A. ( 1998; ). Prolonged replication of a type 1 vaccine-derived poliovirus in an immunodeficient patient. J Clin Microbiol 36, 2893–2899.
    [Google Scholar]
  11. King, A. M. Q., Brown, F., Christian, P. & 8 other authors ( 2000; ). Picornaviruses. In Virus Taxonomy. Seventh Report of the International Committee for the Taxonomy of Viruses, pp. 657–673. Edited by M. H. V. Van Regenmortel, C. M. Fauquet, D. H. L. Bishop, C. H. Calisher, E. B. Carsten, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  12. Leckie, G. W. ( 1987; ). Molecular studies on a human common cold virus, Human rhinovirus nine. PhD thesis, University of Leicester.
  13. Ledford, R. M., Patel, N. R., Demenczuk, T. M., Watanyar, A., Herbertz, T., Collett, M. S. & Pevear, D. C. ( 2004; ). VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds. J Virol 78, 3663–3674.[CrossRef]
    [Google Scholar]
  14. Lee, W. M., Monroe, S. S. & Rueckert, R. R. ( 1993; ). Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol 67, 2110–2122.
    [Google Scholar]
  15. Lee, W. M., Wang, W. & Rueckert, R. R. ( 1995; ). Complete sequence of the RNA genome of human rhinovirus 16, a clinically useful common cold virus belonging to the ICAM-1 receptor group. Virus Genes 9, 177–181.[CrossRef]
    [Google Scholar]
  16. Nicholas, K. & Nicholas, H. ( 1997; ). GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author, 2.6.002 edn. http://www.psc.edu/biomed/genedoc
  17. Oberste, M. S., Maher, K., Kilpatrick, D. R. & Pallansch, M. A. ( 1999a; ). Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73, 1941–1948.
    [Google Scholar]
  18. Oberste, M. S., Maher, K., Kilpatrick, D. R., Flemister, M. R., Brown, B. A. & Pallansch, M. A. ( 1999b; ). Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37, 1288–1293.
    [Google Scholar]
  19. Oberste, M. S., Maher, K., Flemister, M. R., Marchetti, G., Kilpatrick, D. R. & Pallansch, M. A. ( 2000; ). Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol 38, 1170–1174.
    [Google Scholar]
  20. Oberste, M., Schnurr, D., Maher, K., al-Busaidy, S. & Pallansch, M. ( 2001; ). Molecular identification of new picornaviruses and characterization of a proposed enterovirus 73 serotype. J Gen Virol 82, 409–416.
    [Google Scholar]
  21. Oberste, M. S., Maher, K. & Pallansch, M. A. ( 2004a; ). Evidence for frequent recombination within species Human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol 78, 855–867.[CrossRef]
    [Google Scholar]
  22. Oberste, M. S., Penaranda, S., Maher, K. & Pallansch, M. A. ( 2004b; ). Complete genome sequences of all members of the species Human enterovirus A. J Gen Virol 85, 1597–1607.[CrossRef]
    [Google Scholar]
  23. Oberste, M. S., Maher, K., Schnurr, D. & 9 other authors ( 2004c; ). Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses. J Gen Virol 85, 2577–2584.[CrossRef]
    [Google Scholar]
  24. Page, R. D. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  25. Perriere, G. & Gouy, M. ( 1996; ). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369.[CrossRef]
    [Google Scholar]
  26. Rico-Hesse, R., Pallansch, M. A., Nottay, B. K. & Kew, O. M. ( 1987; ). Geographic distribution of wild poliovirus type 1 genotypes. Virology 160, 311–322.[CrossRef]
    [Google Scholar]
  27. Rossmann, M. G., Arnold, E., Erickson, J. W. & 10 other authors ( 1985; ). Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153.[CrossRef]
    [Google Scholar]
  28. Rueckert, R. R. ( 1996; ). Picornaviridae: the viruses and their replication, Chapter 21. In Fields Virology, pp. 609–653. Edited by D. M. Knipe, B. N. Fields & P. E. Howley. Philadelphia: Lippincott-Raven.
  29. Ryan, M. D., Jenkins, O., Hughes, P. J., Brown, A., Knowles, N. J., Booth, D., Minor, P. D. & Almond, J. W. ( 1990; ). The complete nucleotide sequence of enterovirus type 70: relationships with other members of the picornaviridae. J Gen Virol 71, 2291–2299.[CrossRef]
    [Google Scholar]
  30. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  31. Savolainen, C., Hovi, T. & Mulders, M. N. ( 2001; ). Molecular epidemiology of echovirus 30 in Europe: succession of dominant sublineages within a single major genotype. Arch Virol 146, 521–537.[CrossRef]
    [Google Scholar]
  32. Savolainen, C., Mulders, M. N. & Hovi, T. ( 2002a; ). Phylogenetic analysis of rhinovirus isolates collected during successive epidemic seasons. Virus Res 85, 41–46.[CrossRef]
    [Google Scholar]
  33. Savolainen, C., Blomqvist, S., Mulders, M. N. & Hovi, T. ( 2002b; ). Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol 83, 333–340.
    [Google Scholar]
  34. Savolainen, C., Laine, P., Mulders, M. N. & Hovi, T. ( 2004; ). Sequence analysis of human rhinoviruses in the RNA-dependent RNA polymerase coding region reveals large within-species variation. J Gen Virol 85, 2271–2277.[CrossRef]
    [Google Scholar]
  35. Skern, T., Sommergruber, W., Blaas, D., Gruendler, P., Fraundorfer, F., Pieler, C., Fogy, I. & Kuechler, E. ( 1985; ). Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Res 13, 2111–2126.[CrossRef]
    [Google Scholar]
  36. Stanway, G. ( 1989; ). Human rhinovirus 85 (HRV85), complete nucleotide sequence. http://www.iah.bbsrc.ac.uk/virus/Picornaviridae/index.html
  37. Stanway, G., Hughes, P. J., Mountford, R. C., Minor, P. D. & Almond, J. W. ( 1984; ). The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res 12, 7859–7875.[CrossRef]
    [Google Scholar]
  38. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  39. Van Regenmortel, M. H., Bishop, D. H., Fauquet, C. M., Mayo, M. A., Maniloff, J. & Calisher, C. H. ( 1997; ). Guidelines to the demarcation of virus species. Arch Virol 142, 1505–1518.
    [Google Scholar]
  40. Vlasak, M., Blomqvist, S., Hovi, T., Hewat, E. & Blaas, D. ( 2003; ). Sequence and structure of human rhinoviruses reveal the basis of receptor discrimination. J Virol 77, 6923–6930.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80445-0
Loading
/content/journal/jgv/10.1099/vir.0.80445-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 697 - 706

Primers. GenBank accession numbers. Predicted cleavage sites at the N and C termini of capsid protein VP1 of the prototype strains of human rhinovirus species A. [PDF](646 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error