1887

Abstract

Replication of poliovirus (PV) genomic RNA in HeLa cells has previously been found to start at distinct sites at the nuclear periphery. In the present study, the earliest steps in the virus replication cycle, i.e. the appearance and intracellular translocation of viral protein and negative-strand RNA prior to positive-strand RNA synthesis, were followed. During translation, positive-strand RNA and newly synthesized viral protein presented as a dispersed endoplasmic reticulum (ER)-like pattern. Concomitant with translation, individual PV vesicle clusters emerged at the ER and formed nascent replication complexes, which contained newly synthesized negative-strand RNA. The complexes rapidly moved centripetally, in a microtubule-dependent way, to the perinuclear area to engage in positive-strand viral RNA synthesis. Replication complexes made transcriptionally silent with guanidine/HCl followed the anterograde membrane pathway to the Golgi complex within the microtubule-organizing centre (MTOC), whereas replication complexes active in positive-strand RNA synthesis were retained at the nuclear periphery. If the silent replication complexes that had accumulated at the MTOC were released from the guanidine block, transcription was not readily resumed. Rather, positive-strand RNA was redistributed back to the ER to start, after a lag phase, translation, followed by negative- and positive-strand RNA synthesis in replication complexes migrating to the nuclear periphery. As some of the findings appear to be in contrast to events reported in cell-free guanidine-synchronized translation/transcription systems, implications for the comparison of systems with the living cell are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80442-0
2005-03-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860707.html?itemId=/content/journal/jgv/10.1099/vir.0.80442-0&mimeType=html&fmt=ahah

References

  1. Agol, V. I., Paul, A. V. & Wimmer, E. ( 1999; ). Paradoxes of the replication of picornaviral genomes. Virus Res 62, 129–147.[CrossRef]
    [Google Scholar]
  2. Barton, D. J. & Flanegan, J. B. ( 1997; ). Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C. J Virol 71, 8482–8489.
    [Google Scholar]
  3. Barton, D. J., Black, E. P. & Flanegan, J. B. ( 1995; ). Complete replication of poliovirus in vitro: preinitiation RNA replication complexes require soluble cellular factors for the synthesis of VPg-linked RNA. J Virol 69, 5516–5527.
    [Google Scholar]
  4. Barton, D. J., Morasco, B. J. & Flanegan, J. B. ( 1999; ). Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J Virol 73, 10104–10112.
    [Google Scholar]
  5. Bienz, K., Egger, D. & Pasamontes, L. ( 1987; ). Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and autoradiography. Virology 160, 220–226.[CrossRef]
    [Google Scholar]
  6. Bienz, K., Egger, D., Troxler, M. & Pasamontes, L. ( 1990; ). Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J Virol 64, 1156–1163.
    [Google Scholar]
  7. Bienz, K., Egger, D., Pfister, T. & Troxler, M. ( 1992; ). Structural and functional characterization of the poliovirus replication complex. J Virol 66, 2740–2747.
    [Google Scholar]
  8. Bienz, K., Egger, D. & Pfister, T. ( 1994; ). Characteristics of the poliovirus replication complex. Arch Virol Suppl. 9, 147–157.
    [Google Scholar]
  9. Bolten, R., Egger, D., Gosert, R., Schaub, G., Landmann, L. & Bienz, K. ( 1998; ). Intracellular localization of poliovirus plus- and minus-strand RNA visualized by strand-specific fluorescent in situ hybridization. J Virol 72, 8578–8585.
    [Google Scholar]
  10. Borman, A. M., Deliat, F. G. & Kean, K. M. ( 1994; ). Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO J 13, 3149–3157.
    [Google Scholar]
  11. Bost, A. G., Venable, D., Liu, L. & Heinz, B. A. ( 2003; ). Cytoskeletal requirements for hepatitis C virus (HCV) RNA synthesis in the HCV replicon cell culture system. J Virol 77, 4401–4408.[CrossRef]
    [Google Scholar]
  12. Brass, V., Bieck, E., Montserret, R., Wolk, B., Hellings, J. A., Blum, H. E., Penin, F. & Moradpour, D. ( 2002; ). An amino-terminal amphipathic α-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J Biol Chem 277, 8130–8139.[CrossRef]
    [Google Scholar]
  13. Brockway, S. M., Clay, C. T., Lu, X. T. & Denison, M. R. ( 2003; ). Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J Virol 77, 10515–10527.[CrossRef]
    [Google Scholar]
  14. Caliguiri, L. A. & Tamm, I. ( 1968; ). Action of guanidine on the replication of poliovirus RNA. Virology 35, 408–417.[CrossRef]
    [Google Scholar]
  15. Chen, J. & Ahlquist, P. ( 2000; ). Brome mosaic virus polymerase-like protein 2a is directed to the endoplasmic reticulum by helicase-like viral protein 1a. J Virol 74, 4310–4318.[CrossRef]
    [Google Scholar]
  16. Chen, J. B., Noueiry, A. & Ahlquist, P. ( 2003; ). An alternate pathway for recruiting template RNA to the brome mosaic virus RNA replication complex. J Virol 77, 2568–2577.[CrossRef]
    [Google Scholar]
  17. Choe, S. S. & Kirkegaard, K. ( 2004; ). Intracellular topology and epitope shielding of poliovirus 3A protein. J Virol 78, 5973–5982.[CrossRef]
    [Google Scholar]
  18. Collis, P. S., O'Donnell, B. J., Barton, D. J., Rogers, J. A. & Flanegan, J. B. ( 1992; ). Replication of poliovirus RNA and subgenomic RNA transcripts in transfected cells. J Virol 66, 6480–6488.
    [Google Scholar]
  19. Crotty, S., Saleh, M.-C., Gitlin, L., Beske, O. & Andino, R. ( 2004; ). The poliovirus replication machinery can escape inhibition by an antiviral drug that targets a host cell protein. J Virol 78, 3378–3386.[CrossRef]
    [Google Scholar]
  20. Danthi, P. & Chow, M. ( 2004; ). Cholesterol removal by methyl-β-cyclodextrin inhibits poliovirus entry. J Virol 78, 33–41.[CrossRef]
    [Google Scholar]
  21. Derrigo, M., Cestelli, A., Savettieri, G. & DiLiegro, I. ( 2000; ). RNA–protein interactions in the control of stability and localization of messenger RNA. Int J Mol Med 5, 111–123.
    [Google Scholar]
  22. DeTulleo, L. & Kirchhausen, T. ( 1998; ). The clathrin endocytic pathway in viral infection. EMBO J 17, 4585–4593.[CrossRef]
    [Google Scholar]
  23. Doedens, J., Maynell, L. A., Klymkowsky, M. W. & Kirkegaard, K. ( 1994; ). Secretory pathway function, but not cytoskeletal integrity, is required in poliovirus infection. Arch Virol Suppl. 9, 159–172.
    [Google Scholar]
  24. Echeverri, A. C. & Dasgupta, A. ( 1995; ). Amino terminal regions of poliovirus 2C protein mediate membrane binding. Virology 208, 540–553.[CrossRef]
    [Google Scholar]
  25. Egger, D. & Bienz, K. ( 2002; ). Recombination of poliovirus RNA proceeds in mixed replication complexes originating from distinct replication start sites. J Virol 76, 10960–10971.[CrossRef]
    [Google Scholar]
  26. Egger, D., Pasamontes, L., Bolten, R., Boyko, V. & Bienz, K. ( 1996; ). Reversible dissociation of the poliovirus replication complex: functions and interactions of its components in viral RNA synthesis. J Virol 70, 8675–8683.
    [Google Scholar]
  27. Egger, D., Teterina, N., Ehrenfeld, E. & Bienz, K. ( 2000; ). Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol 74, 6570–6580.[CrossRef]
    [Google Scholar]
  28. Egger, D., Wolk, B., Gosert, R., Bianchi, L., Blum, H. E., Moradpour, D. & Bienz, K. ( 2002; ). Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76, 5974–5984.[CrossRef]
    [Google Scholar]
  29. Fogg, M. H., Teterina, N. L. & Ehrenfeld, E. ( 2003; ). Membrane requirements for uridylylation of the poliovirus VPg protein and viral RNA synthesis in vitro. J Virol 77, 11408–11416.[CrossRef]
    [Google Scholar]
  30. Gamarnik, A. V. & Andino, R. ( 1998; ). Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12, 2293–2304.[CrossRef]
    [Google Scholar]
  31. Girard, M., Baltimore, D. & Darnell, J. E. ( 1967; ). The poliovirus replication complex: sites for synthesis of poliovirus RNA. J Mol Biol 24, 59–74.[CrossRef]
    [Google Scholar]
  32. Goodfellow, I. G., Polacek, C., Andino, R. & Evans, D. J. ( 2003; ). The poliovirus 2C cis-acting replication element-mediated uridylylation of VPg is not required for synthesis of negative-sense genomes. J Gen Virol 84, 2359–2363.[CrossRef]
    [Google Scholar]
  33. Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K. & Baker, S. C. ( 2002; ). RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76, 3697–3708.[CrossRef]
    [Google Scholar]
  34. Huang, Y., Hogle, J. M. & Chow, M. ( 2000; ). Is the 135S poliovirus particle an intermediate during cell entry? J Virol 74, 8757–8761.[CrossRef]
    [Google Scholar]
  35. Huang, Y. S., Carson, J. H., Barbarese, E. & Richter, J. D. ( 2003; ). Facilitation of dendritic mRNA transport by CPEB. Genes Dev 17, 638–653.[CrossRef]
    [Google Scholar]
  36. Ivashkina, N., Wolk, B., Lohmann, V., Bartenschlager, R., Blum, H. E., Penin, F. & Moradpour, D. ( 2002; ). The hepatitis C virus RNA-dependent RNA polymerase membrane insertion sequence is a transmembrane segment. J Virol 76, 13088–13093.[CrossRef]
    [Google Scholar]
  37. Jurgens, Q. & Flanegan, J. B. ( 2003; ). Initiation of poliovirus negative-strand RNA synthesis requires precursor forms of P2 proteins. J Virol 77, 1075–1083.[CrossRef]
    [Google Scholar]
  38. Klumperman, J. ( 2000; ). Transport between ER and Golgi. Curr Opin Cell Biol 12, 445–449.[CrossRef]
    [Google Scholar]
  39. Kronenberger, P., Schober, D., Prchla, E., Blaas, D. & Fuchs, R. ( 1997; ). Use of free-flow electrophoresis for the analysis of cellular uptake of picornaviruses. Electrophoresis 18, 2531–2536.[CrossRef]
    [Google Scholar]
  40. Molla, A., Paul, A. V. & Wimmer, E. ( 1991; ). Cell-free, de novo synthesis of poliovirus. Science 254, 1647–1651.[CrossRef]
    [Google Scholar]
  41. Moradpour, D., Gosert, R., Egger, D., Penin, F., Blum, H. E. & Bienz, K. ( 2003; ). Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex. Antiviral Res 60, 103–109.[CrossRef]
    [Google Scholar]
  42. Morasco, B. J., Sharma, N., Parilla, J. & Flanegan, J. B. ( 2003; ). Poliovirus cre(2C)-dependent synthesis of VPgpUpU is required for positive- but not negative-strand RNA synthesis. J Virol 77, 5136–5144.[CrossRef]
    [Google Scholar]
  43. Mottola, G., Cardinali, G., Ceccacci, A., Trozzi, C., Bartholomew, L., Torrisi, M. R., Pedrazzini, E., Bonatti, S. & Migliaccio, G. ( 2002; ). Hepatitis C virus nonstructural proteins are localized in a modified endoplasmic reticulum of cells expressing viral subgenomic replicons. Virology 293, 31–43.[CrossRef]
    [Google Scholar]
  44. Mueller, S., Cao, X., Welker, R. & Wimmer, E. ( 2002; ). Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J Biol Chem 277, 7897–7904.[CrossRef]
    [Google Scholar]
  45. Murray, K. E. & Barton, D. J. ( 2003; ). Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. J Virol 77, 4739–4750.[CrossRef]
    [Google Scholar]
  46. Murray, K. E., Steil, B. P., Roberts, A. W. & Barton, D. J. ( 2004; ). Replication of poliovirus RNA with complete internal ribosome entry site deletions. J Virol 78, 1393–1402.[CrossRef]
    [Google Scholar]
  47. Ohka, S., Yang, W.-X., Terada, E., Iwasaki, K. & Nomoto, A. ( 1998; ). Retrograde transport of intact poliovirus through the axon via the fast transport system. Virology 250, 67–75.[CrossRef]
    [Google Scholar]
  48. Ohka, S., Matsuda, N., Tohyama, K., Oda, T., Morikawa, M., Kuge, S. & Nomoto, A. ( 2004; ). Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endosome. J Virol 78, 7186–7198.[CrossRef]
    [Google Scholar]
  49. Parsley, T. B., Towner, J. S., Blyn, L. B., Ehrenfeld, E. & Semler, B. L. ( 1997; ). Poly (rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3, 1124–1134.
    [Google Scholar]
  50. Paul, A. V., van Boom, J. H., Filippov, D. & Wimmer, E. ( 1998; ). Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393, 280–284.[CrossRef]
    [Google Scholar]
  51. Paul, A. V., Rieder, E., Kim, D. W., van Boom, J. H. & Wimmer, E. ( 2000; ). Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 74, 10359–10370.[CrossRef]
    [Google Scholar]
  52. Pfister, T. & Wimmer, E. ( 1999; ). Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem 274, 6992–7001.[CrossRef]
    [Google Scholar]
  53. Pfister, T., Pasamontes, L., Troxler, M., Egger, D. & Bienz, K. ( 1992; ). Immunochemical localization of capsid-related particles in subcellular fractions of poliovirus-infected cells. Virology 188, 676–684.[CrossRef]
    [Google Scholar]
  54. Pincus, S. E. & Wimmer, E. ( 1986; ). Production of guanidine-resistant and -dependent poliovirus mutants from cloned cDNA: mutations in polypeptide 2C are directly responsible for altered guanidine sensitivity. J Virol 60, 793–796.
    [Google Scholar]
  55. Potter, M. D. & Nicchitta, C. V. ( 2000; ). Regulation of ribosome detachment from the mammalian endoplasmic reticulum membrane. J Biol Chem 275, 33828–33835.[CrossRef]
    [Google Scholar]
  56. Prod'homme, D., Jakubiec, A., Tournier, V., Drugeon, G. & Jupin, I. ( 2003; ). Targeting of the turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein. J Virol 77, 9124–9135.[CrossRef]
    [Google Scholar]
  57. Rios, R. M. & Bornens, M. ( 2003; ). The Golgi apparatus at the cell centre. Curr Opin Cell Biol 15, 60–66.[CrossRef]
    [Google Scholar]
  58. Roumiantzeff, M., Summers, D. F. & Maizel, J. V., Jr ( 1971; ). In vitro protein synthetic activity of membrane-bound poliovirus polyribosomes. Virology 44, 249–258.[CrossRef]
    [Google Scholar]
  59. Rust, R. C., Landmann, L., Gosert, R., Tang, B. L., Hong, W., Hauri, H.-P., Egger, D. & Bienz, K. ( 2001; ). Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. J Virol 75, 9808–9818.[CrossRef]
    [Google Scholar]
  60. Scales, S. J., Pepperkok, R. & Kreis, T. E. ( 1997; ). Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148.[CrossRef]
    [Google Scholar]
  61. Schmidt-Mende, J., Bieck, E., Hügle, T., Penin, F., Rice, C. M., Blum, H. E. & Moradpour, D. ( 2001; ). Determinants for membrane association of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 276, 44052–44063.[CrossRef]
    [Google Scholar]
  62. Seiser, R. M. & Nicchitta, C. V. ( 2000; ). The fate of membrane-bound ribosomes following the termination of protein synthesis. J Biol Chem 275, 33820–33827.[CrossRef]
    [Google Scholar]
  63. Sodeik, B. ( 2000; ). Mechanisms of viral transport in the cytoplasm. Trends Microbiol 8, 465–472.[CrossRef]
    [Google Scholar]
  64. Suhy, D. A., Giddings, T. H. & Kirkegaard, K. ( 2000; ). Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74, 8953–8965.[CrossRef]
    [Google Scholar]
  65. Takeda, N., Kuhn, R. J., Yang, C. F., Takegami, T. & Wimmer, E. ( 1986; ). Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells. J Virol 60, 43–53.
    [Google Scholar]
  66. Takegami, T., Semler, B. L., Anderson, C. W. & Wimmer, E. ( 1983; ). Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides. Virology 128, 33–47.[CrossRef]
    [Google Scholar]
  67. Thyberg, J. & Moskalewski, S. ( 1999; ). Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246, 263–279.[CrossRef]
    [Google Scholar]
  68. Towner, J. S., Ho, T. V. & Semler, B. L. ( 1996; ). Determinants of membrane association for poliovirus protein 3AB. J Biol Chem 271, 26810–26818.[CrossRef]
    [Google Scholar]
  69. Verlinden, Y., Cuconati, A., Wimmer, E. & Rombaut, B. ( 2002; ). The viral protein 3CD induces an equilibrium between the viral protein and RNA synthesis in a cell-free system for poliovirus replication. Arch Virol 147, 731–744.[CrossRef]
    [Google Scholar]
  70. Ward, T. H., Polishchuk, R. S., Caplan, S., Hirschberg, K. & Lippincott-Schwartz, J. ( 2001; ). Maintenance of Golgi structure and function depends on the integrity of ER export. J Cell Biol 155, 557–570.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80442-0
Loading
/content/journal/jgv/10.1099/vir.0.80442-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error