Epstein–Barr virus latent membrane protein 2A mimics B-cell receptor-dependent virus reactivation Free

Abstract

Latent membrane protein 2A (LMP2A) of Epstein–Barr virus (EBV) shares protein motifs with the B-cell receptor that play a role in B-cell receptor signalling and has been shown to mimic an activated B-cell receptor by providing a survival signal for mature B cells in transgenic mice. Conversely, LMP2A has been reported not to support but to inhibit B-cell receptor signalling with respect to virus reactivation and to block lytic virus induction after anti-Ig treatment of EBV-infected B cells. To solve this apparent paradox, the role of LMP2A in lytic-cycle induction was re-examined in B cells conditionally immortalized by EBV. It was shown that, in the absence of other stimuli, LMP2A expression alone could lead to induction of the virus lytic cycle. Similarly to B-cell receptor stimulation by anti-Ig treatment, this LMP2A-mediated reactivation was dependent on the mitogen-activated protein kinase pathway and could be inhibited by the viral LMP1. Our data reinforce the notion that LMP2A is a functional homologue of the B-cell receptor, not only with respect to B-cell survival but also with respect to regulation of the lytic cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80440-0
2005-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860551.html?itemId=/content/journal/jgv/10.1099/vir.0.80440-0&mimeType=html&fmt=ahah

References

  1. Adler B., Ashkar S., Cantor H., Weber G. F. 2001; Costimulation by extracellular matrix proteins determines the response to TCR ligation. Cell Immunol 210:30–40 [CrossRef]
    [Google Scholar]
  2. Adler B., Schaadt E., Kempkes B., Zimber-Strobl U., Baier B., Bornkamm G. W. 2002; Control of Epstein–Barr virus reactivation by activated CD40 and viral latent membrane protein 1. Proc Natl Acad Sci U S A 99:437–442 [CrossRef]
    [Google Scholar]
  3. Alber G., Kim K.-M., Weiser P., Riesterer C., Carsetti R., Reth M. 1993; Molecular mimicry of the antigen receptor signalling motif by transmembrane proteins of the Epstein–Barr virus and the bovine leukaemia virus. Curr Biol 3:333–339 [CrossRef]
    [Google Scholar]
  4. Babcock G. J., Thorley-Lawson D. A. 2000; Tonsillar memory B cells, latently infected with Epstein–Barr virus, express the restricted pattern of latent genes previously found only in Epstein–Barr virus-associated tumors. Proc Natl Acad Sci U S A 97:12250–12255 [CrossRef]
    [Google Scholar]
  5. Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A. 1998; EBV persistence in memory B cells in vivo. Immunity 9:395–404 [CrossRef]
    [Google Scholar]
  6. Babcock G. J., Decker L. L., Freeman R. B., Thorley-Lawson D. A. 1999; Epstein–Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 190:567–576 [CrossRef]
    [Google Scholar]
  7. Babcock G. J., Hochberg D., Thorley-Lawson A. D. 2000; The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13:497–506 [CrossRef]
    [Google Scholar]
  8. Beaufils P., Choquet D., Mamoun R. Z., Malissen B. 1993; The (YXXL/I)2 signalling motif found in the cytoplasmic segments of the bovine leukaemia virus envelope protein and Epstein–Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events. EMBO J 12:5105–5112
    [Google Scholar]
  9. Brielmeier M., Bechet J. M., Suppmann S., Conrad M., Laux G., Bornkamm G. W. 2001; Cloning of phospholipid hydroperoxide glutathione peroxidase (PHGPx) as an anti-apoptotic and growth promoting gene of Burkitt lymphoma cells. Biofactors 14:179–190 [CrossRef]
    [Google Scholar]
  10. Caldwell R. G., Wilson J. B., Anderson S. J., Longnecker R. 1998; Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–411 [CrossRef]
    [Google Scholar]
  11. Campbell K. S. 1999; Signal transduction from the B cell antigen-receptor. Curr Opin Immunol 11:256–264 [CrossRef]
    [Google Scholar]
  12. Chen S.-Y., Lu J., Shih Y.-C., Tsai C.-H. 2002; Epstein–Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase. J Virol 76:9556–9561 [CrossRef]
    [Google Scholar]
  13. Decker L. L., Klaman L. D., Thorley-Lawson D. A. 1996; Detection of the latent form of Epstein–Barr virus DNA in the peripheral blood of healthy individuals. J Virol 70:3286–3289
    [Google Scholar]
  14. Dykstra M. L., Longnecker R., Pierce S. K. 2001; Epstein–Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity 14:57–67 [CrossRef]
    [Google Scholar]
  15. Fenton M., Sinclair A. J. 1999; Divergent requirements for the MAPKERK signal transduction pathway during initial virus infection of quiescent primary B cells and disruption of Epstein–Barr virus latency by phorbol esters. J Virol 73:8913–8916
    [Google Scholar]
  16. Fruehling S., Lee S., Herrold R., Frech B., Laux G., Kremmer E., Grässer F. A., Longnecker R. 1996; Identification of latent membrane protein 2A (LMP2A) domains essential for the LMP2A dominant-negative effect on B-lymphocyte surface immunoglobulin signal transduction. J Virol 70:6216–6226
    [Google Scholar]
  17. Hergenhahn M., Soto U., Weninger A., Polack A., Hsu C.-H., Cheng A.-L., Rosl F. 2002; The chemopreventive compound curcumin is an efficient inhibitor of Epstein–Barr virus BZLF1 transcription in Raji DR-LUC cells. Mol Carcinog 33:137–145 [CrossRef]
    [Google Scholar]
  18. Higuchi M., Izumi K. M., Kieff E. 2001; Epstein–Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc Natl Acad Sci U S A 98:4675–4680 [CrossRef]
    [Google Scholar]
  19. Hinuma Y., Konn M., Yamaguchi J., Wudarski D. J., Blakeslee J. R. J., Grace J. T. J. 1967; Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol 1:1045–1051
    [Google Scholar]
  20. Hochberg D., Middeldorp J. M., Catalina M., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A. 2004a; Demonstration of the Burkitt's lymphoma Epstein–Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A 101:239–244 [CrossRef]
    [Google Scholar]
  21. Hochberg D., Souza T., Catalina M., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A. 2004b; Acute infection with Epstein–Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol 78:5194–5204 [CrossRef]
    [Google Scholar]
  22. Kaykas A., Sugden B. 2000; The amino-terminus and membrane-spanning domains of LMP-1 inhibit cell proliferation. Oncogene 19:1400–1410 [CrossRef]
    [Google Scholar]
  23. Kempkes B., Spitkovsky D., Jansen-Durr P., Ellwart J. W., Kremmer E., Delecluse H. J., Rottenberger C., Bornkamm G. W., Hammerschmidt W. 1995; B-cell proliferation and induction of early G1-regulating proteins by Epstein–Barr virus mutants conditional for EBNA2. EMBO J 14:88–96
    [Google Scholar]
  24. Kempkes B., Zimber-Strobl U., Eissner G., Pawlita M., Falk M., Hammerschmidt W., Bornkamm G. W. 1996a; Epstein–Barr virus nuclear antigen 2 (EBNA2)–oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein–Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol 77:227–237 [CrossRef]
    [Google Scholar]
  25. Kempkes B., Zimber-Strobl U., Eissner G., Pawlita M., Falk M., Hammerschmidt W., Bornkamm G. W. 1996b; Epstein–Barr virus nuclear antigen 2 (EBNA2)-oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein–Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol 77:227–237 [CrossRef]
    [Google Scholar]
  26. Kieser A., Kaiser C., Hammerschmidt W. 1999; LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. EMBO J 18:2511–2521 [CrossRef]
    [Google Scholar]
  27. Konishi K., Maruo S., Kato H., Takada K. 2001; Role of Epstein–Barr virus-encoded latent membrane protein 2A on virus-induced immortalization and virus activation. J Gen Virol 82:1451–1456
    [Google Scholar]
  28. Lam K. M., Syed N., Whittle H., Crawford D. 1991; Circulating Epstein–Barr virus-carrying B cells in acute malaria. Lancet 337:876–878 [CrossRef]
    [Google Scholar]
  29. Laux G., Freese U. K., Bornkamm G. W. 1985; Structure and evolution of two related transcription units of Epstein–Barr virus carrying small tandem repeats. J Virol 56:987–995
    [Google Scholar]
  30. Laux G., Perricaudet M., Farrell P. J. 1988; A spliced Epstein–Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J 7:769–774
    [Google Scholar]
  31. Laux G., Economou A., Farrell P. J. 1989; The terminal protein gene 2 of Epstein–Barr virus is transcribed from a bidirectional latent promoter region. J Gen Virol 70:3079–3084 [CrossRef]
    [Google Scholar]
  32. Longnecker R. 2000; Epstein–Barr virus latency: LMP2, a regulator or means for Epstein–Barr virus persistence?. Adv Cancer Res 79:175–200
    [Google Scholar]
  33. Miller C. L., Longnecker R., Kieff E. 1993; Epstein–Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J Virol 67:3087–3094
    [Google Scholar]
  34. Miller C. L., Lee J. H., Kieff E., Longnecker R. 1994; An integral membrane protein (LMP2) blocks reactivation of Epstein–Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A 91:772–776 [CrossRef]
    [Google Scholar]
  35. Miller C. L., Burkhardt A. L., Lee J. H., Stealey B., Longnecker R., Bolen J. B., Kieff E. 1995; Integral membrane protein 2 of Epstein–Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2:155–166 [CrossRef]
    [Google Scholar]
  36. Miyashita E. M., Yang B., Babcock G. J., Thorley-Lawson D. A. 1997; Identification of the site of Epstein–Barr virus persistence in vivo as a resting B cell. J Virol 71:4882–4891
    [Google Scholar]
  37. Polack A., Laux G., Hergenhahn M., Kloz U., Roeser H., Hecker E., Bornkamm G. W. 1992; Short-term assays for detection of conditional cancerogens. I. Construction of DR-CAT Raji cells and some of their characteristics as tester cells. Int J Cancer 50:611–616 [CrossRef]
    [Google Scholar]
  38. Qu L., Rowe D. T. 1992; Epstein–Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol 66:3715–3724
    [Google Scholar]
  39. Rabson M., Heston L., Miller G. 1983; Identification of a rare Epstein–Barr virus variant that enhances early antigen expression in Raji cells. Proc Natl Acad Sci U S A 80:2762–2766 [CrossRef]
    [Google Scholar]
  40. Rickinson A. B., Kieff E. 2001; Epstein–Barr virus. In Fields Virology , 4th edn. pp  2575–2627 Edited by Knipe D. M., Howley P. M., Griffin D. E., Martin M. A., Lamb R. A., Roizman B., Straus S. E. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  41. Rowe D. T., Hall L., Joab I., Laux G. 1990; Identification of the Epstein–Barr virus terminal protein gene products in latently infected lymphocytes. J Virol 64:2866–2875
    [Google Scholar]
  42. Sugden B., Marsh K., Yates J. 1985; A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein–Barr virus. Mol Cell Biol 5:410–413
    [Google Scholar]
  43. Takada K. 1984; Cross-linking of cell surface immunoglobulins induces Epstein–Barr virus in Burkitt lymphoma lines. Int J Cancer 33:27–32 [CrossRef]
    [Google Scholar]
  44. Thorley-Lawson D. A. 2001; Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1:75–82 [CrossRef]
    [Google Scholar]
  45. Tierney R. J., Steven N., Young L. S., Rickinson A. B. 1994; Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 68:7374–7385
    [Google Scholar]
  46. Tovey M., Lenoir G., Lours-Begon J. 1978; Activation of latent Epstein–Barr virus by antibody to human IgM. Nature 276:270–272 [CrossRef]
    [Google Scholar]
  47. Zimber-Strobl U., Suentzenich K. O., Laux G., Eick D., Cordier M., Calendar A., Billaud M., Lenoir G. M., Bornkamm G. W. 1991; Epstein–Barr virus nuclear antigen 2 activated transcription of the terminal protein gene. J Virol 65:415–424
    [Google Scholar]
  48. Zimber-Strobl U., Kempkes B., Marschall G., Zeidler R., Van Kooten C., Banchereau J., Bornkamm G. W., Hammerschmidt W. 1996; Epstein–Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. EMBO J 15:7070–7078
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80440-0
Loading
/content/journal/jgv/10.1099/vir.0.80440-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed