The human cytomegalovirus UL78 gene is highly conserved among clinical isolates, but is dispensable for replication in fibroblasts and a renal artery organ-culture system Free

Abstract

The human cytomegalovirus (HCMV) UL78 ORF is considered to encode a seven-transmembrane receptor. However, neither the gene nor the UL78 protein has been characterized so far. The objective of this study was to investigate the UL78 gene and to clarify whether it is essential for replication. UL78 transcription was activated early after infection, was inhibited by cycloheximide but not by phosphonoacetic acid, and resulted in a 1·7 kb mRNA. Later in the replication cycle, a second mRNA of 4 kb evolved, comprising the UL77 and UL78 ORFs. The 5′ end of the UL78 mRNA initiated 48 bp upstream of the translation start and the polyadenylated tail started 268 bp downstream of the UL78 translation stop codon within the UL79 ORF. By using bacterial artificial chromosome technology, a recombinant HCMV lacking most of the UL78 coding region was constructed. Successful reconstitution of the UL78-deficient virus proved that the gene was not essential for virus replication in fibroblasts. The deletion also did not reduce virus replication in -cultured sections of human renal arteries. Analysis of viral proteins at different stages of the replication cycle confirmed these results. Among clinical HCMV isolates, the predicted UL78 protein was highly conserved. However, an accumulation of different single mutations could be found in the N-terminal region and at the very end of the C terminus. Due to the absence of an HCMV model, the role of UL78 in the pathogenesis of HCMV infection in humans remains unclear.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80436-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860297.html?itemId=/content/journal/jgv/10.1099/vir.0.80436-0&mimeType=html&fmt=ahah

References

  1. Bahr U., Darai G. 2001; Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J Virol 75:4854–4870 [CrossRef]
    [Google Scholar]
  2. Bairoch A., Boeckmann B. 1992; The swiss-prot protein sequence data bank. Nucleic Acids Res 20:2019–2022 [CrossRef]
    [Google Scholar]
  3. Beisser P. S., Vink C., Van Dam J. G., Grauls G., Vanherle S. J. V., Bruggeman C. A. 1998; The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72:2352–2363
    [Google Scholar]
  4. Beisser P. S., Grauls G., Bruggeman C. A., Vink C. 1999; Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73:7218–7230
    [Google Scholar]
  5. Bodaghi B., Jones T. R., Zipeto D., Vita C., Sun L., Laurent L., Arenzana-Seisdedos F., Virelizier J.-L., Michelson S. 1998; Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866 [CrossRef]
    [Google Scholar]
  6. Borst E.-M., Hahn G., Koszinowski U. H., Messerle M. 1999; Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli : a new approach for construction of HCMV mutants. J Virol 73:8320–8329
    [Google Scholar]
  7. Casarosa P., Bakker R. A., Verzijl D., Navis M., Timmerman H., Leurs R., Smit M. J. 2001; Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276:1133–1137 [CrossRef]
    [Google Scholar]
  8. Casarosa P., Gruijthuijsen Y. K., Michel D. 9 other authors 2003; Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq,Gi, and Gs classes. . J Biol Chem 278:50010–50023 [CrossRef]
    [Google Scholar]
  9. Chee M. S., Satchwell S. C., Preddie E., Weston K. M., Barrell B. G. 1990; Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344:774–777 [CrossRef]
    [Google Scholar]
  10. Davison A. J., Dolan A., Akter P., Addison C., Dargan D. J., Alcendor D. J., McGeoch D. J., Hayward G. S. 2003; The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28 [CrossRef]
    [Google Scholar]
  11. Davis-Poynter N. J., Lynch D. M., Vally H., Shellam G. R., Rawlinson W. D., Barrell B. G., Farrell H. E. 1997; Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 71:1521–1529
    [Google Scholar]
  12. Gao J.-L., Kuhns D. B., Tiffany H. L., McDermott D., Li X., Franke U., Murphy P. M. 1993; Structure and functional expression of the human macrophage inflammatory protein 1 α /RANTES receptor. J Exp Med 177:1421–1427 [CrossRef]
    [Google Scholar]
  13. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E., Efstathiou S., Craxton M., Macaulay H. A. 1995; The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:29–51 [CrossRef]
    [Google Scholar]
  14. Isegawa Y., Ping Z., Nakano K., Sugimoto N., Yamanishi K. 1998; Human herpesvirus 6 open reading frame U12 encodes a functional β -chemokine receptor. J Virol 72:6104–6112
    [Google Scholar]
  15. Margulies B. J., Browne H., Gibson W. 1996; Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 225:111–125 [CrossRef]
    [Google Scholar]
  16. Megaw A. G., Rapaport D., Avidor B., Frenkel N., Davison A. J. 1998; The DNA sequence of the RK strain of human herpesvirus 7. Virology 244:119–132 [CrossRef]
    [Google Scholar]
  17. Menotti L., Mirandola P., Locati M., Campadelli-Fiume G. 1999; Trafficking to the plasma membrane of the seven-transmembrane protein encoded by human herpesvirus 6 U51 gene involves a cell-specific function present in T lymphocytes. J Virol 73:325–333
    [Google Scholar]
  18. Michel D., Salamini F., Bartels D., Dale P., Baga M., Szalay A. 1993; Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum . Plant J 4:29–40 [CrossRef]
    [Google Scholar]
  19. Michel D., Pavić I., Zimmermann A., Haupt E., Wunderlich K., Heuschmid M., Mertens T. 1996; The UL97 gene product of human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase. J Virol 70:6340–6346
    [Google Scholar]
  20. Michel D., Schaarschmidt P., Wunderlich K., Heuschmid M., Simoncini L., Mühlberger D., Zimmermann A., Pavić I., Mertens T. 1998; Functional regions of the human cytomegalovirus protein pUL97 involved in nuclear localization and phosphorylation of ganciclovir and pUL97 itself. J Gen Virol 79:2105–2112
    [Google Scholar]
  21. Michel D., Höhn S., Haller T., Jun D., Mertens T. 2001; Aciclovir selects for ganciclovir-cross-resistance of human cytomegalovirus in vitro that is only in part explained by known mutations in the UL97 protein. J Med Virol 65:70–76 [CrossRef]
    [Google Scholar]
  22. Milne R. S. B., Mattick C., Nicholson L., Devaraj P., Alcami A., Gompels U. A. 2000; RANTES binding and down-regulation by a novel human herpesvirus-6 β chemokine receptor. J Immunol 164:2396–2404 [CrossRef]
    [Google Scholar]
  23. Minisini R., Tulone C., Lüske A., Michel D., Mertens T., Gierschik P., Moepps B. 2003; Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J Virol 77:4489–4501 [CrossRef]
    [Google Scholar]
  24. Nicholas J. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J Virol 70:5975–5989
    [Google Scholar]
  25. Oliveira S. A., Shenk T. E. 2001; Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci U S A 98:3237–3242 [CrossRef]
    [Google Scholar]
  26. Pósfai G., Koob M. D., Kirkpatrick H. A., Blattner F. R. 1997; Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157 : H7 genome. J Bacteriol 179:4426–4428
    [Google Scholar]
  27. Rawlinson W. D., Farrell H. E., Barrell B. G. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849
    [Google Scholar]
  28. Reinhardt B., Vaida B., Voisard R. 7 other authors 2003; Human cytomegalovirus infection in human renal arteries in vitro. J Virol Methods 109:1–9 [CrossRef]
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Streblow D. N., Soderberg-Naucler C., Vieira P., Smith J., Wakabayashi E., Ruchti F., Mattison K., Altschuler Y., Nelson J. A. 1999; The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520 [CrossRef]
    [Google Scholar]
  31. Vink C., Beuken E., Bruggeman C. A. 2000; Complete DNA sequence of the rat cytomegalovirus genome. J Virol 74:7656–7665 [CrossRef]
    [Google Scholar]
  32. Vink C., Smit M. J., Leurs R., Bruggeman C. A. 2001; The role of cytomegalovirus-encoded homologs of G protein-coupled receptors and chemokines in manipulation of and evasion from the immune system. J Clin Virol 23:43–55 [CrossRef]
    [Google Scholar]
  33. Voisard R., von Eicken J., Baur R., Gschwend J. E., Wenderoth U., Kleinschmidt K., Hombach V., Höher M. 1999; A human arterial organ culture model of postangioplasty restenosis: results up to 56 days after ballooning. Atherosclerosis 144:123–134
    [Google Scholar]
  34. Wagner M., Michel D., Schaarschmidt P., Vaida B., Jonjic S., Messerle M., Mertens T., Koszinowski U. 2000; Comparison between human cytomegalovirus pUL97 and murine cytomegalovirus (MCMV) pM97 expressed by MCMV and vaccinia virus: pM97 does not confer ganciclovir sensitivity. J Virol 74:10729–10736 [CrossRef]
    [Google Scholar]
  35. Waldhoer M., Kledal T. N., Farrell H., Schwartz T. W. 2002; Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76:8161–8168 [CrossRef]
    [Google Scholar]
  36. Wang S.-K., Duh C.-Y., Wu C.-W. 2004; Human cytomegalovirus UL76 encodes a novel virion-associated protein that is able to inhibit viral replication. J Virol 78:9750–9762 [CrossRef]
    [Google Scholar]
  37. Zipeto D., Bodaghi B., Laurent L., Virelizier J.-L., Michelson S. 1999; Kinetics of transcription of human cytomegalovirus chemokine receptor US28 in different cell types. J Gen Virol 80:543–547
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80436-0
Loading
/content/journal/jgv/10.1099/vir.0.80436-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed