1887

Abstract

Virus genomes from the same family may exhibit a wide range in their DNA GC content, whereas viral hypermutants differ substantially in GC content from their parental genomes. As AT-rich DNA melts at lower temperatures than GC-rich DNA, use of a lower denaturation temperature during PCR should allow differential amplification of AT-rich genomes or variants within a quasispecies. The latter situation has been explored explicitly in a two-step process by using a series of well-defined viral sequences differing in their AT content. Firstly, the lowest denaturation temperature ( ) that allowed amplification of the parental sequence was determined. Secondly, differential amplification of AT-rich viral variants was obtained by using a denaturation temperature 1–3 °C lower than . Application of this sensitive method to two different viruses allowed us to identify human immunodeficiency virus type 1 G→A hypermutants in a situation where none were expected and to amplify AT-rich variants selectively within a spectrum of poliovirus mutants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80426-0
2005-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/1/vir860125.html?itemId=/content/journal/jgv/10.1099/vir.0.80426-0&mimeType=html&fmt=ahah

References

  1. Abu-Daya, A. & Fox, K. R. ( 1997; ). Interaction of minor groove binding ligands with long AT tracts. Nucleic Acids Res 25, 4962–4969.[CrossRef]
    [Google Scholar]
  2. Abu-Daya, A., Brown, P. M. & Fox, K. R. ( 1995; ). DNA sequence preferences of several AT-selective minor groove binding ligands. Nucleic Acids Res 23, 3385–3392.[CrossRef]
    [Google Scholar]
  3. Balanant, J., Guillot, S., Candrea, A., Delpeyroux, F. & Crainic, R. ( 1991; ). The natural genomic variability of poliovirus analyzed by a restriction fragment length polymorphism assay. Virology 184, 645–654.[CrossRef]
    [Google Scholar]
  4. Bishop, K. N., Holmes, R. K., Sheehy, A. M., Davidson, N. O., Cho, S.-J. & Malim, M. H. ( 2004; ). Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14, 1392–1396.[CrossRef]
    [Google Scholar]
  5. Goodenow, M., Huet, T., Saurin, W., Kwok, S., Sninsky, J. & Wain-Hobson, S. ( 1989; ). HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. J Acquir Immune Defic Syndr 2, 344–352.
    [Google Scholar]
  6. Guillot, S., Caro, V., Cuervo, N., Korotkova, E., Combiescu, M., Persu, A., Aubert-Combiescu, A., Delpeyroux, F. & Crainic, R. ( 2000; ). Natural genetic exchanges between vaccine and wild poliovirus strains in humans. J Virol 74, 8434–8443.[CrossRef]
    [Google Scholar]
  7. Harris, R. S., Bishop, K. N., Sheehy, A. M., Craig, H. M., Petersen-Mahrt, S. K., Watt, I. N., Neuberger, M. S. & Malim, M. H. ( 2003; ). DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809.[CrossRef]
    [Google Scholar]
  8. Janini, M., Rogers, M., Birx, D. R. & McCutchan, F. E. ( 2001; ). Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. J Virol 75, 7973–7986.[CrossRef]
    [Google Scholar]
  9. Jarmuz, A., Chester, A., Bayliss, J., Gisbourne, J., Dunham, I., Scott, J. & Navaratnam, N. ( 2002; ). An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296.[CrossRef]
    [Google Scholar]
  10. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A. J. ( 2003; ). Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112.[CrossRef]
    [Google Scholar]
  11. Liddament, M. T., Brown, W. L., Schumacher, A. J. & Harris, R. S. ( 2004; ). APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14, 1385–1391.[CrossRef]
    [Google Scholar]
  12. Martinez, M. A., Vartanian, J.-P. & Wain-Hobson, S. ( 1994; ). Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A 91, 11787–11791.[CrossRef]
    [Google Scholar]
  13. Masny, A. & Płucienniczak, A. ( 2003; ). Ligation mediated PCR performed at low denaturation temperatures – PCR melting profiles. Nucleic Acids Res 31, e114.[CrossRef]
    [Google Scholar]
  14. Pathak, V. K. & Temin, H. M. ( 1990; ). Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci U S A 87, 6019–6023.[CrossRef]
    [Google Scholar]
  15. Sheehy, A. M., Gaddis, N. C. & Malim, M. H. ( 2003; ). The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9, 1404–1407.[CrossRef]
    [Google Scholar]
  16. Smith, S. M., Markham, R. B. & Jeang, K. T. ( 1996; ). Conditional reduction of human immunodeficiency virus type 1 replication by a gain-of-herpes simplex virus 1 thymidine kinase function. Proc Natl Acad Sci U S A 93, 7955–7960.[CrossRef]
    [Google Scholar]
  17. Suspène, R., Sommer, P., Henry, M. & 7 other authors ( 2004; ). APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32, 2421–2429.[CrossRef]
    [Google Scholar]
  18. Teng, B., Burant, C. F. & Davidson, N. O. ( 1993; ). Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819.[CrossRef]
    [Google Scholar]
  19. Vartanian, J.-P., Meyerhans, A., Åsjö, B. & Wain-Hobson, S. ( 1991; ). Selection, recombination, and G→A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 65, 1779–1788.
    [Google Scholar]
  20. Wiegand, H. L., Doehle, B. P., Bogerd, H. P. & Cullen, B. R. ( 2004; ). A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 23, 2451–2458.[CrossRef]
    [Google Scholar]
  21. Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P. & Yu, X.-F. ( 2003; ). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060.[CrossRef]
    [Google Scholar]
  22. Yu, Q., König, R., Pillai, S., Chiles, K., Kearney, M., Palmer, S., Richman, D., Coffin, J. M. & Landau, N. R. ( 2004; ). Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11, 435–442.[CrossRef]
    [Google Scholar]
  23. Zheng, Y.-H., Irwin, D., Kurosu, T., Tokunaga, K., Sata, T. & Peterlin, B. M. ( 2004; ). Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78, 6073–6076.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80426-0
Loading
/content/journal/jgv/10.1099/vir.0.80426-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error