1887

Abstract

Group B coxsackieviruses (CVB) cause numerous diseases, including myocarditis, pancreatitis, aseptic meningitis and possibly type 1 diabetes. To date, infectious cDNA copies of CVB type 3 (CVB3) genomes have all been derived from pathogenic virus strains. An infectious cDNA copy of the well-characterized, non-pathogenic CVB3 strain GA genome was cloned in order to facilitate mapping of the CVB genes that influence expression of a virulence phenotype. Comparison of the sequence of the parental CVB3/GA population, derived by direct RT-PCR-mediated sequence analysis, to that of the infectious CVB3/GA progeny genome demonstrated that an authentic copy was cloned; numerous differences were observed in coding and non-coding sequences relative to other CVB3 strains. Progeny CVB3/GA replicated similarly to the parental strain in three different cell cultures and was avirulent when inoculated into mice, causing neither pancreatitis nor myocarditis. Inoculation of mice with CVB3/GA protected mice completely against myocarditis and pancreatitis induced by cardiovirulent CVB3 challenge. The secondary structure predicted for the CVB3/GA domain II, a region within the 5′ non-translated region that is implicated as a key site affecting the expression of a cardiovirulent phenotype, differs from those predicted for cardiovirulent and pancreovirulent CVB3 strains. This is the first report characterizing a cloned CVB3 genome from an avirulent strain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80424-0
2005-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/1/vir860197.html?itemId=/content/journal/jgv/10.1099/vir.0.80424-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Arnesjo, B., Eden, T., Ihse, I., Nordenfelt, E. & Ursing, B. ( 1976; ). Enterovirus infections in acute pancreatitis – a possible etiological connection. Scand J Gastroenterol 11, 645–649.
    [Google Scholar]
  3. Auvinen, P., Mäkelä, M. J., Roivainen, M., Kallajoki, M., Vainionpää, R. & Hyypiä, T. ( 1993; ). Mapping of antigenic sites of coxsackievirus B3 by synthetic peptides. APMIS 101, 517–528.[CrossRef]
    [Google Scholar]
  4. Blyn, L. B., Towner, J. S., Semler, B. L. & Ehrenfeld, E. ( 1997; ). Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol 71, 6243–6246.
    [Google Scholar]
  5. Bowles, N. E., Richardson, P. J., Olsen, E. G. & Archard, L. C. ( 1986; ). Detection of coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet i, 1120–1123.
    [Google Scholar]
  6. Bradrick, S. S., Lieben, E. A., Carden, B. M. & Romero, J. R. ( 2001; ). A predicted secondary structural domain within the internal ribosome entry site of echovirus 12 mediates a cell-type-specific block to viral replication. J Virol 75, 6472–6481.[CrossRef]
    [Google Scholar]
  7. Brown, F., Talbot, P. & Burrows, R. ( 1973; ). Antigenic differences between isolates of swine vesicular disease virus and their relationship to coxsackie B5 virus. Nature 245, 315–316.[CrossRef]
    [Google Scholar]
  8. Chapman, N. M., Tu, Z., Tracy, S. & Gauntt, C. J. ( 1994; ). An infectious cDNA copy of the genome of a non-cardiovirulent coxsackievirus B3 strain: its complete sequence analysis and comparison to the genomes of cardiovirulent coxsackieviruses. Arch Virol 135, 115–130.[CrossRef]
    [Google Scholar]
  9. Chapman, N. M., Kim, K.-S., Tracy, S., Jackson, J., Höfling, K., Leser, J. S., Malone, J. & Kolbeck, P. ( 2000a; ). Coxsackievirus expression of the murine secretory protein interleukin-4 induces increased synthesis of immunoglobulin G1 in mice. J Virol 74, 7952–7962.[CrossRef]
    [Google Scholar]
  10. Chapman, N. M., Ragland, A., Leser, J. S., Höfling, K., Willian, S., Semler, B. L. & Tracy, S. ( 2000b; ). A group B coxsackievirus/poliovirus 5′ nontranslated region chimera can act as an attenuated vaccine strain in mice. J Virol 74, 4047–4056.[CrossRef]
    [Google Scholar]
  11. Coller, B.-A. G., Chapman, N. M., Beck, M. A., Pallansch, M. A., Gauntt, C. J. & Tracy, S. M. ( 1990; ). Echovirus 22 is an atypical enterovirus. J Virol 64, 2692–2701.
    [Google Scholar]
  12. Cornell, C. T., Perera, R., Brunner, J. E. & Semler, B. L. ( 2004; ). Strand-specific RNA synthesis determinants in the RNA-dependent RNA polymerase of poliovirus. J Virol 78, 4397–4407.[CrossRef]
    [Google Scholar]
  13. Dalldorf, G. ( 1955; ). The coxsackie viruses. Annu Rev Microbiol 9, 277–296.[CrossRef]
    [Google Scholar]
  14. De Jager, H. & Van Creveld, S. ( 1956; ). Myocarditis in newborns, caused by coxsackie virus; clinical and pathological data. Ann Pediatr 187, 100–118.
    [Google Scholar]
  15. de Jong, A. S., Melchers, W. J. G., Glaudemans, D. H. R. F., Willems, P. H. G. M. & van Kuppeveld, F. J. M. ( 2004; ). Mutational analysis of different regions in the coxsackievirus 2B protein: requirements for homo-multimerization, membrane permeabilization, subcellular localization, and virus replication. J Biol Chem 279, 19924–19935.[CrossRef]
    [Google Scholar]
  16. de Verdugo, U. R., Selinka, H-C., Huber, M., Kramer, B., Kellermann, J., Hofschneider, P. H. & Kandolf, R. ( 1995; ). Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol 69, 6751–6757.
    [Google Scholar]
  17. Disney, M. E., Howard, E. M., Wood, B. S. B. & Findlay, G. M. ( 1953; ). Bornholm disease in children. Br Med J 1, 1351–1354.[CrossRef]
    [Google Scholar]
  18. Drescher, K. M., Kono, K., Bopegamage, S., Carson, S. D. & Tracy, S. ( 2004; ). Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329, 381–394.[CrossRef]
    [Google Scholar]
  19. Dunn, J. J., Chapman, N. M., Tracy, S. & Romero, J. R. ( 2000; ). Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5′ nontranslated region. J Virol 74, 4787–4794.[CrossRef]
    [Google Scholar]
  20. Dunn, J. J., Bradrick, S. S., Chapman, N. M., Tracy, S. M. & Romero, J. R. ( 2003; ). The stem loop II within the 5′ nontranslated region of clinical coxsackievirus B3 genomes determines cardiovirulence phenotype in a murine model. J Infect Dis 187, 1552–1561.[CrossRef]
    [Google Scholar]
  21. Evans, D., Dunn, G., Minor, P. D., Schild, G. C., Cann, A. J., Stanway, G., Almond, J. W., Currey, K. & Maizel, J. V., Jr ( 1985; ). Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature 314, 548–550.[CrossRef]
    [Google Scholar]
  22. Gamarnik, A. V. & Andino, R. ( 2000; ). Interactions of viral protein 3CD and poly(rC) binding protein with the 5′ untranslated region of the poliovirus genome. J Virol 74, 2219–2226.[CrossRef]
    [Google Scholar]
  23. Gauntt, C. J., Paque, R. E., Trousdale, M. D., Gudvangen, R. J., Barr, D. T., Lipotich, G. J., Nealon, T. J. & Duffey, P. S. ( 1983; ). Temperature-sensitive mutant of coxsackievirus B3 establishes resistance in neonatal mice that protects them during adolescence against coxsackievirus B3-induced myocarditis. Infect Immun 39, 851–864.
    [Google Scholar]
  24. Gomez, R. M., Lascano, E. F. & Berria, M. I. ( 1991; ). Murine acinar pancreatitis preceding necrotizing myocarditis after coxsackievirus B3 inoculation. J Med Virol 35, 71–75.[CrossRef]
    [Google Scholar]
  25. Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J. W., Barclay, W. & Evans, D. J. ( 2000; ). Identification of a cis-acting replication element within the poliovirus coding region. J Virol 74, 4590–4600.[CrossRef]
    [Google Scholar]
  26. Goodfellow, I. G., Kerrigan, D. & Evans, D. J. ( 2003; ). Structure and function analysis of the poliovirus cis-acting replication element (CRE). RNA 9, 124–137.[CrossRef]
    [Google Scholar]
  27. Haarmann, C. M., Schwimmbeck, P. L., Mertens, T., Schultheiss, H.-P. & Strauer, B. E. ( 1994; ). Identification of serotype-specific and nonserotype-specific B-cell epitopes of coxsackie B virus using synthetic peptides. Virology 200, 381–389.[CrossRef]
    [Google Scholar]
  28. Halim, S. & Ramsingh, A. I. ( 2000; ). A point mutation in VP1 of coxsackievirus B4 alters antigenicity. Virology 269, 86–94.[CrossRef]
    [Google Scholar]
  29. Hansen, J. L., Long, A. M. & Schultz, S. C. ( 1997; ). Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5, 1109–1122.[CrossRef]
    [Google Scholar]
  30. He, Y., Chipman, P. R., Howitt, J. & 7 other authors ( 2001; ). Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat Struct Biol 8, 874–878.[CrossRef]
    [Google Scholar]
  31. Henke, A., Zell, R., Ehrlich, G. & Stelzner, A. ( 2001; ). Expression of immunoregulatory cytokines by recombinant coxsackievirus B3 variants confers protection against virus-caused myocarditis. J Virol 75, 8187–8194.[CrossRef]
    [Google Scholar]
  32. Höfling, K., Tracy, S., Chapman, N., Kim, K.-S. & Leser, J. S. ( 2000; ). Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J Virol 74, 4570–4578.[CrossRef]
    [Google Scholar]
  33. Huber, S. A. ( 1997; ). Autoimmunity in myocarditis: relevance of animal models. Clin Immunol Immunopathol 83, 93–102.[CrossRef]
    [Google Scholar]
  34. Huber, S., Polgar, J., Moraska, A., Cunningham, M., Schwimmbeck, P. & Schultheiss, P. ( 1993; ). T lymphocyte responses in CVB3-induced murine myocarditis. Scand J Infect Dis Suppl 88, 67–78.
    [Google Scholar]
  35. Hyoty, H., Hiltunen, M. & Lonnrot, M. ( 1998; ). Enterovirus infections and insulin dependent diabetes mellitus – evidence for causality. Clin Diagn Virol 9, 77–84.[CrossRef]
    [Google Scholar]
  36. Iizuka, N., Yonekawa, H. & Nomoto, A. ( 1991; ). Nucleotide sequences important for translation initiation of enterovirus RNA. J Virol 65, 4867–4873.
    [Google Scholar]
  37. Imrie, C. W., Ferguson, J. C. & Sommerville, R. G. ( 1977; ). Coxsackie and mumpsvirus infection in a prospective study of acute pancreatitis. Gut 18, 53–56.[CrossRef]
    [Google Scholar]
  38. Jackson, R. J. & Kaminski, A. ( 1995; ). Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000.
    [Google Scholar]
  39. Kandolf, R. & Hofschneider, P. H. ( 1985; ). Molecular cloning of the genome of a cardiotropic coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci U S A 82, 4818–4822.[CrossRef]
    [Google Scholar]
  40. Kanno, T., Mackay, D., Inoue, T. & 7 other authors ( 1999; ). Mapping the genetic determinants of pathogenicity and plaque phenotype in swine vesicular disease virus. J Virol 73, 2710–2716.
    [Google Scholar]
  41. Kanno, T., Mackay, D., Wilsden, G. & Kitching, P. ( 2001; ). Virulence of swine vesicular disease virus is determined at two amino acids in capsid protein VP1 and 2A protease. Virus Res 80, 101–107.[CrossRef]
    [Google Scholar]
  42. Kaplan, M. H., Klein, S. W., McPhee, J. & Harper, R. G. ( 1983; ). Group B coxsackievirus infections in infants younger than three months of age: a serious childhood illness. Rev Infect Dis 5, 1019–1032.[CrossRef]
    [Google Scholar]
  43. Kawamura, N., Kohara, M., Abe, S., Komatsu, T., Tago, K., Arita, M. & Nomoto, A. ( 1989; ). Determinants in the 5′ noncoding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol 63, 1302–1309.
    [Google Scholar]
  44. Kennedy, J. D., Talbot, I. C. & Tanner, M. S. ( 1986; ). Severe pancreatitis and fatty liver progressing to cirrhosis associated with coxsackie B4 infection in a three year old with alpha-1-antitrypsin deficiency. Acta Paediatr Scand 75, 336–339.[CrossRef]
    [Google Scholar]
  45. Kibrick, S. & Benirschke, K. ( 1958; ). Severe generalized disease (encephalohepatomyocarditis) occurring in the newborn period and due to infection with coxsackie virus, group B; evidence of intrauterine infection with this agent. Pediatrics 22, 857–875.
    [Google Scholar]
  46. Knowles, N. J. & McCauley, J. W. ( 1997; ). Coxsackievirus B5 and the relationship to swine vesicular disease virus. Curr Top Microbiol Immunol 223, 153–167.
    [Google Scholar]
  47. Knowlton, K. U., Jeon, E.-S., Berkley, N., Wessely, R. & Huber, S. ( 1996; ). A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J Virol 70, 7811–7818.
    [Google Scholar]
  48. Kohara, M., Abe, S., Komatsu, T., Tago, K., Arita, M. & Nomoto, A. ( 1988; ). A recombinant virus between the Sabin 1 and Sabin 3 vaccine strains of poliovirus as a possible candidate for a new type 3 poliovirus live vaccine strain. J Virol 62, 2828–2835.
    [Google Scholar]
  49. Le, S.-Y., Chen, J.-H., Sonenberg, N. & Maizel, J. V. ( 1992; ). Conserved tertiary structure elements in the 5′ untranslated region of human enteroviruses and rhinoviruses. Virology 191, 858–866.[CrossRef]
    [Google Scholar]
  50. Lee, C., Maull, E., Chapman, N., Tracy, S., Wood, J. & Gauntt, C. ( 1997; ). Generation of an infectious cDNA of a highly cardiovirulent coxsackievirus B3(CVB3m) and comparison to other infectious CVB3 cDNAs. Virus Res 50, 225–235.[CrossRef]
    [Google Scholar]
  51. Li, X., Lu, H.-H., Mueller, S. & Wimmer, E. ( 2001; ). The C-terminal residues of poliovirus proteinase 2Apro are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J Gen Virol 82, 397–408.
    [Google Scholar]
  52. Liu, Z., Carthy, C. M., Cheung, P., Bohunek, L., Wilson, J. E., McManus, B. M. & Yang, D. ( 1999; ). Structural and functional analysis of the 5′ untranslated region of coxsackievirus B3 RNA: in vivo translational and infectivity studies of full-length mutants. Virology 265, 206–217.[CrossRef]
    [Google Scholar]
  53. Longson, M., Cole, F. M. & Davies, D. ( 1969; ). Isolation of a coxsackie virus group B, type 5, from the heart of a fatal case of myocarditis in an adult. J Clin Pathol 22, 654–658.[CrossRef]
    [Google Scholar]
  54. Macadam, A. J., Ferguson, G., Burlison, J., Stone, D., Skuce, R., Almond, J. W. & Minor, P. D. ( 1992; ). Correlation of RNA secondary structure and attenuation of Sabin vaccine strains of poliovirus in tissue culture. Virology 189, 415–422.[CrossRef]
    [Google Scholar]
  55. Macadam, A. J., Pollard, S. R., Ferguson, G., Skuce, R., Wood, D., Almond, J. W. & Minor, P. D. ( 1993; ). Genetic basis of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates. Virology 192, 18–26.[CrossRef]
    [Google Scholar]
  56. Martino, T. A., Liu, P., Petric, M. & Sole, M. J. ( 1995; ). Enteroviral myocarditis and dilated cardiomyopathy: a review of clinical and experimental studies. In Human Enterovirus Infections. Edited by H. A. Rotbart. Washington, DC: American Society for Microbiology.
  57. Melnick, J. L. ( 1996; ). Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology, 3rd edn, pp. 655–712. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott-Raven.
  58. Melnick, J. L., Shaw, E. W. & Curnen, E. C. ( 1949; ). A virus isolated from patients diagnosed as non-paralytic poliomyelitis or aseptic meningitis. Proc Soc Exp Biol Med 71, 344–349.[CrossRef]
    [Google Scholar]
  59. Merkle, I., van Ooij, M. J. M., van Kuppeveld, F. J. M., Glaudemans, D. H. R. F., Galama, J. M. D., Henke, A., Zell, R. & Melchers, W. J. G. ( 2002; ). Biological significance of a human enterovirus B-specific RNA element in the 3′ nontranslated region. J Virol 76, 9900–9909.[CrossRef]
    [Google Scholar]
  60. Mertens, T., Gruneklee, D. & Eggers, H. J. ( 1983; ). Neutralizing antibodies against coxsackie B viruses in patients with recent onset of type I diabetes. Eur J Pediatr 140, 293–294.[CrossRef]
    [Google Scholar]
  61. Minor, P. D. ( 1992; ). The molecular biology of poliovaccines. J Gen Virol 73, 3065–3077.[CrossRef]
    [Google Scholar]
  62. Minor, P. D. ( 2003; ). Polio vaccines and the cessation of vaccination. Expert Rev Vaccines 2, 99–104.[CrossRef]
    [Google Scholar]
  63. Minor, P. D., Ferguson, M., Evans, D. M. A., Almond, J. W. & Icenogle, J. P. ( 1986; ). Antigenic structure of polioviruses of serotypes 1, 2 and 3. J Gen Virol 67, 1283–1291.[CrossRef]
    [Google Scholar]
  64. Muckelbauer, J. K., Kremer, M., Minor, I., Diana, G., Dutko, F. J., Groarke, J., Pevear, D. C. & Rossmann, M. G. ( 1995; ). The structure of coxsackievirus B3 at 3·5 Å resolution. Structure 3, 653–667.[CrossRef]
    [Google Scholar]
  65. Nathanson, N. & Martin, J. R. ( 1979; ). The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. Am J Epidemiol 110, 672–692.
    [Google Scholar]
  66. Nathanson, N., McGann, K., Wilesmith, J., Desrosiers, R. & Brookmeyer, R. ( 1993; ). The evolution of virus diseases: their emergence, epidemicity, and control. Virus Res 29, 3–20.[CrossRef]
    [Google Scholar]
  67. Page, G. S., Mosser, A. G., Hogle, J. M., Filman, D. J., Rueckert, R. R. & Chow, M. ( 1988; ). Three-dimensional structure of poliovirus serotype 1 neutralizing determinants. J Virol 62, 1781–1794.
    [Google Scholar]
  68. Pallansch, M. A. & Roos, R. P. ( 2001; ). Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology, 4th edn, pp. 723–775. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  69. Racaniello, V. R. ( 1988; ). Poliovirus neurovirulence. Adv Virus Res 34, 217–246.
    [Google Scholar]
  70. Racaniello, V. R. & Ren, R. ( 1996; ). Poliovirus biology and pathogenesis. Curr Top Microbiol Immunol 206, 305–325.
    [Google Scholar]
  71. Ramsingh, A. I. ( 1997; ). Coxsackieviruses and pancreatitis. Front Biosci 2, e53–e62.
    [Google Scholar]
  72. Ramsingh, A. I. & Collins, D. N. ( 1995; ). A point mutation in the VP4 coding sequence of coxsackievirus B4 influences virulence. J Virol 69, 7278–7281.
    [Google Scholar]
  73. Ramsingh, A., Hixson, A., Duceman, B. & Slack, J. ( 1990; ). Evidence suggesting that virulence maps to the P1 region of the coxsackievirus B4 genome. J Virol 64, 3078–3081.
    [Google Scholar]
  74. Romero, J. R., Price, C. & Dunn, J. J. ( 1997; ). Genetic divergence among the group B coxsackieviruses. Curr Top Microbiol Immunol 223, 97–152.
    [Google Scholar]
  75. Sabin, A. B. ( 1955; ). Characteristics and genetic potentialities of experimentally produced and naturally occurring variants of poliomyelitis virus. Ann N Y Acad Sci 61, 924–938.[CrossRef]
    [Google Scholar]
  76. Sabin, A. B. & Boulger, L. R. ( 1973; ). History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand 1, 115–118.[CrossRef]
    [Google Scholar]
  77. Sherry, B. & Rueckert, R. ( 1985; ). Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 53, 137–143.
    [Google Scholar]
  78. Sherry, B., Mosser, A. G., Colonno, R. J. & Rueckert, R. R. ( 1986; ). Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J Virol 57, 246–257.
    [Google Scholar]
  79. Sigurdsson, E. & Bækkeskov, S. ( 1990; ). The 64-kDa beta cell membrane autoantigen and other target molecules of humoral autoimmunity in insulin-dependent diabetes mellitus. Curr Top Microbiol Immunol 164, 143–168.
    [Google Scholar]
  80. Smith, C. P., Clements, G. B., Riding, M. H., Collins, P., Bottazzo, G. F. & Taylor, K. W. ( 1998; ). Simultaneous onset of type 1 diabetes mellitus in identical infant twins with enterovirus infection. Diabet Med 15, 515–517.[CrossRef]
    [Google Scholar]
  81. Strauss, D. M., Glustrom, L. W. & Wuttke, D. S. ( 2003; ). Towards an understanding of the poliovirus replication complex: the solution structure of the soluble domain of the poliovirus 3A protein. J Mol Biol 330, 225–234.[CrossRef]
    [Google Scholar]
  82. Tam, P. E., Weber-Sanders, M. L. & Messner, R. P. ( 2003; ). Multiple viral determinants mediate myopathogenicity in coxsackievirus B1-induced chronic inflammatory myopathy. J Virol 77, 11849–11854.[CrossRef]
    [Google Scholar]
  83. Towner, J. S., Ho, T. V. & Semler, B. L. ( 1996; ). Determinants of membrane association for poliovirus protein 3AB. J Biol Chem 271, 26810–26818.[CrossRef]
    [Google Scholar]
  84. Tracy, S., Chapman, N. M. & Tu, Z. ( 1992; ). Coxsackievirus B3 from an infectious cDNA copy of the genome is cardiovirulent in mice. Arch Virol 122, 399–409.[CrossRef]
    [Google Scholar]
  85. Tracy, S., Höfling, K., Pirruccello, S., Lane, P. H., Reyna, S. M. & Gauntt, C. J. ( 2000; ). Group B coxsackievirus myocarditis and pancreatitis: connection between viral virulence phenotypes in mice. J Med Virol 62, 70–81.[CrossRef]
    [Google Scholar]
  86. Tracy, S., Drescher, K. M., Chapman, N. M., Kim, K.-S., Carson, S. D., Pirruccello, S., Lane, P. H., Romero, J. R. & Leser, J. S. ( 2002; ). Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 76, 12097–12111.[CrossRef]
    [Google Scholar]
  87. Tu, Z., Chapman, N. M., Hufnagel, G., Tracy, S., Romero, J. R., Barry, W. H., Zhao, L., Currey, K. & Shapiro, B. ( 1995; ). The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′ nontranslated region. J Virol 69, 4607–4618.
    [Google Scholar]
  88. Ursing, B. ( 1973; ). Acute pancreatitis in coxsackie B infection. Br Med J 3, 524–525.[CrossRef]
    [Google Scholar]
  89. Willian, S., Tracy, S., Chapman, N., Leser, J. S., Romero, J. R., Shapiro, B. & Currey, K. ( 2000; ). Mutations in a conserved enteroviral RNA oligonucleotide sequence affect positive strand viral RNA synthesis. Arch Virol 145, 2061–2086.[CrossRef]
    [Google Scholar]
  90. Yang, D., Cheung, P., Sun, Y. & 7 other authors ( 2003; ). A Shine-Dalgarno-like sequence mediates in vitro ribosomal internal entry and subsequent scanning for translation initiation of coxsackievirus B3 RNA. Virology 305, 31–43.[CrossRef]
    [Google Scholar]
  91. Zell, R., Sidigi, K., Henke, A., Schmidt-Brauns, J., Hoey, E., Martin, S. & Stelzner, A. ( 1999; ). Functional features of the bovine enterovirus 5′-non-translated region. J Gen Virol 80, 2299–2309.
    [Google Scholar]
  92. Zhang, G., Wilsden, G., Knowles, N. J. & McCauley, J. W. ( 1993; ). Complete nucleotide sequence of a coxsackie B5 virus and its relationship to swine vesicular disease virus. J Gen Virol 74, 845–853.[CrossRef]
    [Google Scholar]
  93. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80424-0
Loading
/content/journal/jgv/10.1099/vir.0.80424-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error