1887

Abstract

Several NS1 mutant viruses of human influenza A/PR/8/34 (H1N1) virus were tested for their ability to induce pro-inflammatory cytokines in primary human macrophages. The findings revealed a pronounced difference in the virus-induced cytokine pattern, depending on the functionality of the NS1 protein-encoded domains. The PR8/NS1–125 mutant virus, which encodes the first 125 aa of the NS1 protein, thus lacking the C-terminal domains, induced significantly higher amounts of beta interferon, interleukin (IL) 6, tumour necrosis factor alpha and CCL3 (MIP-1) when compared with the A/PR/8/34 wild-type virus. However, this mutant virus was as efficient as wild-type virus in the inhibition of IL1 and IL18 release from infected macrophages. Another group of viral mutants either lacking or possessing non-functional RNA-binding and dimerization domains induced 10–50 times more biologically active IL1 and five times more biologically active IL18 than the wild-type or PR8/NS1–125 viruses. The hallmark of infection with this group of mutant viruses was the induction of rapid apoptosis in infected macrophages, which correlated with the enhanced activity of caspase-1. These results indicated that the NS1 protein, through the function of its N-terminal domains, might control caspase-1 activation, thus repressing the maturation of pro-IL1-, pro-IL18- and caspase-1-dependent apoptosis in infected primary human macrophages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80422-0
2005-01-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/1/vir860185.html?itemId=/content/journal/jgv/10.1099/vir.0.80422-0&mimeType=html&fmt=ahah

References

  1. Adachi, M., Matsukura, S., Tokunaga, H. & Kokubu, F. ( 1997; ). Expression of cytokines on human bronchial epithelial cells induced by influenza virus A. Int Arch Allergy Immunol 113, 307–311.[CrossRef]
    [Google Scholar]
  2. Adcock, I. M. ( 1997; ). Transcription factors as activators of gene transcription: AP-1 and NF-κB. Monaldi Arch Chest Dis 52, 178–186.
    [Google Scholar]
  3. Balachandran, S., Kim, C. N., Yeh, W.-C., Mak, T. W., Bhalla, K. & Barber, G. N. ( 1998; ). Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J 17, 6888–6902.[CrossRef]
    [Google Scholar]
  4. Balachandran, S., Roberts, P. C., Kipperman, T., Bhalla, K. N., Compans, R. W., Archer, D. R. & Barber, G. N. ( 2000; ). Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/caspase-8 death signaling pathway. J Virol 74, 1513–1523.[CrossRef]
    [Google Scholar]
  5. Barnes, B., Lubyova, B. & Pitha, P. M. ( 2002; ). On the role of IRF in host defense. J Interferon Cytokine Res 22, 59–71.[CrossRef]
    [Google Scholar]
  6. Bergmann, M., Garcia-Sastre, A., Carnero, E., Pehamberger, H., Wolff, K., Palese, P. & Muster, T. ( 2000; ). Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J Virol 74, 6203–6206.[CrossRef]
    [Google Scholar]
  7. Bradney, C. P., Sempowski, G. D., Liao, H.-X., Haynes, B. F. & Staats, H. F. ( 2002; ). Cytokines as adjuvants for the induction of anti-human immunodeficiency virus peptide immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions after nasal immunization. J Virol 76, 517–524.[CrossRef]
    [Google Scholar]
  8. Castelli, J. C., Hassel, B. A., Maran, A., Paranjape, J., Hewitt, J. A., Li, X., Hsu, Y.-T., Silverman, R. H. & Youle, R. J. ( 1998; ). The role of 2′-5′ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ 5, 313–320.[CrossRef]
    [Google Scholar]
  9. Chen, Z., Li, Y. & Krug, R. M. ( 1999; ). Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J 18, 2273–2283.[CrossRef]
    [Google Scholar]
  10. Chen, W., Calvo, P. A., Malide, D. & 10 other authors ( 2001; ). A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7, 1306–1312.[CrossRef]
    [Google Scholar]
  11. Cohen, G. M. ( 1997; ). Caspases: the executioners of apoptosis. Biochem J 326, 1–16.
    [Google Scholar]
  12. de la Luna, S., Fortes, P., Beloso, A. & Ortín, J. ( 1995; ). Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J Virol 69, 2427–2433.
    [Google Scholar]
  13. Egorov, A., Brandt, S., Sereinig, S. & 7 other authors ( 1998; ). Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol 72, 6437–6441.
    [Google Scholar]
  14. García-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D. E., Durbin, J. E., Palese, P. & Muster, T. ( 1998; ). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330.[CrossRef]
    [Google Scholar]
  15. Ghayur, T., Banerjee, S., Hugunin, M. & 11 other authors ( 1997; ). Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623.[CrossRef]
    [Google Scholar]
  16. Gu, Y., Kuida, K., Tsutsui, H. & 14 other authors ( 1997; ). Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209.[CrossRef]
    [Google Scholar]
  17. Hanada, T. & Yoshimura, A. ( 2002; ). Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev 13, 413–421.[CrossRef]
    [Google Scholar]
  18. Hatada, E., Saito, S. & Fukuda, R. ( 1999; ). Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J Virol 73, 2425–2433.
    [Google Scholar]
  19. Iordanov, M. S., Wong, J., Bell, J. C. & Magun, B. E. ( 2001; ). Activation of NF-κB by double-stranded RNA (dsRNA) in the absence of protein kinase R and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol 21, 61–72.[CrossRef]
    [Google Scholar]
  20. Jacobs, B. L. & Langland, J. O. ( 1996; ). When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219, 339–349.[CrossRef]
    [Google Scholar]
  21. Julkunen, I., Sareneva, T., Pirhonen, J., Ronni, T., Melén, K. & Matikainen, S. ( 2001; ). Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 12, 171–180.[CrossRef]
    [Google Scholar]
  22. Kaufmann, A., Salentin, R., Meyer, R. G. & 7 other authors ( 2001; ). Defense against influenza A virus infection: essential role of the chemokine system. Immunobiology 204, 603–613.[CrossRef]
    [Google Scholar]
  23. Kim, M.-J., Latham, A. G. & Krug, R. M. ( 2002; ). Human influenza viruses activate an interferon-independent transcription of cellular antiviral genes: outcome with influenza A virus is unique. Proc Natl Acad Sci U S A 99, 10096–10101.[CrossRef]
    [Google Scholar]
  24. Kittel, C., Sereinig, S., Ferko, B., Stasakova, J., Romanova, J., Wolkerstorfer, A., Katinger, H. & Egorov, A. ( 2004; ). Rescue of influenza virus expressing GFP from the NS1 reading frame. Virology 324, 67–73.[CrossRef]
    [Google Scholar]
  25. Kozak, W., Zheng, H., Conn, C. A., Soszynski, D., van der Ploeg, L. H. & Kluger, M. J. ( 1995; ). Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1β-deficient mice. Am J Physiol 269, R969–R977.
    [Google Scholar]
  26. Krug, R. M., Yuan, W., Noah, D. L. & Latham, A. G. ( 2003; ). Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309, 181–189.[CrossRef]
    [Google Scholar]
  27. Li, P., Allen, H., Banerjee, S. & 14 other authors ( 1995; ). Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411.[CrossRef]
    [Google Scholar]
  28. Lisowska, K. & Witkowski, J. M. ( 2003; ). Viral strategies in modulation of NF-κB activity. Arch Immunol Ther Exp (Warsz) 51, 367–375.
    [Google Scholar]
  29. Liu, B., Mori, I., Hossain, M. J., Dong, L., Takeda, K. & Kimura, Y. ( 2004; ). Interleukin-18 improves the early defence system against influenza virus infection by augmenting natural killer cell-mediated cytotoxicity. J Gen Virol 85, 423–428.[CrossRef]
    [Google Scholar]
  30. Lu, Y., Wambach, M., Katze, M. G. & Krug, R. M. ( 1995; ). Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the eIF-2 translation initiation factor. Virology 214, 222–228.[CrossRef]
    [Google Scholar]
  31. Maniatis, T., Falvo, J. V., Kim, T. H., Kim, T. K., Lin, C. H., Parekh, B. S. & Wathelet, M. G. ( 1998; ). Structure and function of the interferon-β enhanceosome. Cold Spring Harbor Symp Quant Biol 63, 609–620.[CrossRef]
    [Google Scholar]
  32. Matikainen, S., Pirhonen, J., Miettinen, M., Lehtonen, A., Govenius-Vintola, C., Sareneva, T. & Julkunen, I. ( 2000; ). Influenza A and Sendai viruses induce differential chemokine gene expression and transcription factor activation in human macrophages. Virology 276, 138–147.[CrossRef]
    [Google Scholar]
  33. Matsukura, S., Kokubu, F., Noda, H., Tokunaga, H. & Adachi, M. ( 1996; ). Expression of IL-6, IL-8, and RANTES on human bronchial epithelial cells, NCI-H292, induced by influenza virus A. J Allergy Clin Immunol 98, 1080–1087.[CrossRef]
    [Google Scholar]
  34. Nakanishi, K., Yoshimoto, T., Tsutsui, H. & Okamura, H. ( 2001; ). Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 12, 53–72.[CrossRef]
    [Google Scholar]
  35. Noah, D. L., Twu, K. Y. & Krug, R. M. ( 2003; ). Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS. Virology 307, 386–395.[CrossRef]
    [Google Scholar]
  36. Pirhonen, J., Sareneva, T., Kurimoto, M., Julkunen, I. & Matikainen, S. ( 1999; ). Virus infection activates IL-1β and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol 162, 7322–7329.
    [Google Scholar]
  37. Pirhonen, J., Sareneva, T., Julkunen, I. & Matikainen, S. ( 2001; ). Virus infection induces proteolytic processing of IL-18 in human macrophages via caspase-1 and caspase-3 activation. Eur J Immunol 31, 726–733.[CrossRef]
    [Google Scholar]
  38. Sareneva, T., Matikainen, S., Kurimoto, M. & Julkunen, I. ( 1998; ). Influenza A virus-induced IFN-α/β and IL-18 synergistically enhance IFN-γ gene expression in human T cells. J Immunol 160, 6032–6038.
    [Google Scholar]
  39. Servant, M. J., Grandvaux, N. & Hiscott, J. ( 2002; ). Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 64, 985–992.[CrossRef]
    [Google Scholar]
  40. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., Litwack, G. & Alnemri, E. S. ( 1996; ). Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci U S A 93, 14486–14491.[CrossRef]
    [Google Scholar]
  41. Staats, H. F., Bradney, C. P., Gwinn, W. M., Jackson, S. S., Sempowski, G. D., Liao, H.-X., Letvin, N. L. & Haynes, B. F. ( 2001; ). Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J Immunol 167, 5386–5394.[CrossRef]
    [Google Scholar]
  42. Takizawa, T., Fukuda, R., Miyawaki, T., Ohashi, K. & Nakanishi, Y. ( 1995; ). Activation of the apoptotic Fas antigen-encoding gene upon influenza virus infection involving spontaneously produced beta-interferon. Virology 209, 288–296.[CrossRef]
    [Google Scholar]
  43. Takizawa, T., Ohashi, K. & Nakanishi, Y. ( 1996; ). Possible involvement of double-stranded RNA-activated protein kinase in cell death by influenza virus infection. J Virol 70, 8128–8132.
    [Google Scholar]
  44. Takizawa, T., Tatematsu, C., Ohashi, K. & Nakanishi, Y. ( 1999; ). Recruitment of apoptotic cysteine proteases (caspases) in influenza virus-induced cell death. Microbiol Immunol 43, 245–252.[CrossRef]
    [Google Scholar]
  45. Talon, J., Horvath, C. M., Polley, R., Basler, C. F., Muster, T., Palese, P. & García-Sastre, A. ( 2000; ). Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 74, 7989–7996.[CrossRef]
    [Google Scholar]
  46. Wang, X., Li, M., Zheng, H., Muster, T., Palese, P., Beg, A. A. & García-Sastre, A. ( 2000; ). Influenza A virus NS1 protein prevents activation of NF-κB and induction of alpha/beta interferon. J Virol 74, 11566–11573.[CrossRef]
    [Google Scholar]
  47. Wurzer, W. J., Planz, O., Ehrhardt, C., Giner, M., Silberzahn, T., Pleschka, S. & Ludwig, S. ( 2003; ). Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J 22, 2717–2728.[CrossRef]
    [Google Scholar]
  48. Zhirnov, O. P., Konakova, T. E., Garten, W. & Klenk, H.-D. ( 1999; ). Caspase-dependent N-terminal cleavage of influenza virus nucleocapsid protein in infected cells. J Virol 73, 10158–10163.
    [Google Scholar]
  49. Zhirnov, O. P., Konakova, T. E., Wolff, T. & Klenk, H.-D. ( 2002; ). NS1 protein of influenza A virus down-regulates apoptosis. J Virol 76, 1617–1625.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80422-0
Loading
/content/journal/jgv/10.1099/vir.0.80422-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error