1887

Abstract

Evidence has been presented which shows that part of the C-terminal tail of the gp41 transmembrane protein of human immunodeficiency virus type 1 (HIV-1) contains a neutralization epitope and is thus exposed on the external surface of the virion. Here, SAR1, a monoclonal antibody, which was stimulated by immunization with a plant virus expressing 60 copies of the GERDRDR sequence from the exposed gp41 tail, and has an unusual pattern of neutralization activity, giving little or no neutralization of free virions, but effecting modest post-attachment neutralization (PAN) of virus bound to target cells was investigated. Here, the properties of PAN were investigated. It was found that PAN could be mediated at 4 or 20 °C, but that at 20 °C maximum PAN required virus–cell complexes to be incubated for 3 h before addition of antibody. Further PAN appeared stable at 20 °C and could be mediated for at least 5 h at this temperature. In contrast, when virus–cell complexes formed at 20 °C but then shifted to 37 °C for various times before addition of SAR1, PAN was maximal after just 10 min, and was lost after 30 min incubation. Thus, PAN at 37 °C is transient and temperature-dependent. Since this scenario recalled the temperature requirements of virus–cell fusion, fusion of HIV-1-infected and non-infected cells was investigated, and it was found that SAR1 inhibited this process by up to 75 %, in a dose-dependent manner. However, antibodies to adjacent epitopes did not inhibit fusion. These data confirm the external location of the SAR1 epitope, implicate the gp41 C-terminal tail in the HIV-1 fusion process for the first time, and suggest that SAR1 mediates PAN by inhibiting virus-mediated fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80414-0
2005-05-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861499.html?itemId=/content/journal/jgv/10.1099/vir.0.80414-0&mimeType=html&fmt=ahah

References

  1. Abacioglu, Y. H., Fouts, T. R., Laman, J. D., Classen, E., Pincus, S. H., Moore, J. P., Roby, C. A., Kamin-Lewis, R. & Lewis, G. K. ( 1994; ). Epitope mapping and topology of baculovirus-expressed HIV-1 gp160 determined with a panel of murine monoclonal antibodies. AIDS Res Hum Retroviruses 10, 371–381.[CrossRef]
    [Google Scholar]
  2. Allaway, G. P., Ryder, A. M., Beaudry, G. A. & Maddon, P. J. ( 1993; ). Synergistic inhibition of HIV-1 envelope-mediated cell fusion by CD4-based molecules in combination with antibodies to gp120 of gp41. AIDS Res Hum Retroviruses 9, 581–587.[CrossRef]
    [Google Scholar]
  3. Armstrong, S. J. & Dimmock, N. J. ( 1996; ). Varying temperature-dependence of post-attachment neutralization of human immunodeficiency virus type 1 by monoclonal antibodies to gp120: identification of a very early fusion-independent event as a neutralization target. J Gen Virol 77, 1397–1402.[CrossRef]
    [Google Scholar]
  4. Armstrong, S. J., McInerney, T. L., McLain, L., Wahren, B., Hinkula, J., Levi, M. & Dimmock, N. J. ( 1996; ). Two neutralizing anti-V3 monoclonal antibodies act by affecting different functions of human immunodeficiency virus type 1. J Gen Virol 77, 2931–2941.[CrossRef]
    [Google Scholar]
  5. Barbas, C., III, Björling, E., Chiodi, F. & 8 other authors ( 1992; ). Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus type 1 in vitro. Proc Natl Acad Sci U S A 89, 9339–9343.[CrossRef]
    [Google Scholar]
  6. Bender, E., Woof, J. M., Atkin, J. D., Barker, M. D., Bebbington, C. R. & Burton, D. R. ( 1993; ). Recombinant human antibodies: linkage of an Fab fragment from a combinatorial library to an Fc fragment for expression in mammalian cell culture. Hum Antibodies Hybridomas 4, 74–79.
    [Google Scholar]
  7. Buratti, E., McLain, L., Tisminetzky, S. G., Cleveland, S. M., Dimmock, N. J. & Baralle, F. E. ( 1998; ). The neutralizing antibody response against a conserved region of human immunodeficiency virus type 1 gp41 (amino acid residues 731–752) is uniquely directed against a conformational epitope. J Gen Virol 79, 2709–2716.
    [Google Scholar]
  8. Caffrey, M., Cai, M., Kaufman, J., Stahl, S. J., Wingfield, P. T., Covell, D. G., Gronenborn, A. M. & Clore, G. M. ( 1998; ). Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J 17, 4572–4584.[CrossRef]
    [Google Scholar]
  9. Cao, J., Bergeron, L., Helseth, E., Thali, M., Repke, H. & Sodroski, J. ( 1993; ). Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein. J Virol 67, 2747–2755.
    [Google Scholar]
  10. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. ( 1997; ). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273.[CrossRef]
    [Google Scholar]
  11. Chanh, T. C., Dreesman, G. R., Kanda, P., Linette, G. P., Sparrow, J. T., Ho, D. D. & Kennedy, R. C. ( 1986; ). Induction of anti-HIV neutralizing antibodies by synthetic peptides. EMBO J 5, 3065–3071.
    [Google Scholar]
  12. Cheung, L. H. Y. ( 2002; ). Antibody specificities stimulated by Cowpea mosaic virus – HIV chimeras. PhD thesis. University of Warwick, UK.
  13. Cheung, L., McLain, L., Hollier, M. J., Reading, S. A. & Dimmock, N. J. ( 2005; ). Part of the C-terminal tail of the envelope gp41 transmembrane glycoprotein of human immunodeficiency virus type 1 is exposed on the surface of infected cells and is involved in virus-mediated cell fusion. J Gen Virol 86, 131–138.[CrossRef]
    [Google Scholar]
  14. Cleveland, S. M., Buratti, E., Jones, T. D., North, P., Baralle, F. E., McLain, L., McInerney, T. L., Durrani, Z. & Dimmock, N. J. ( 2000a; ). Immunogenic and antigenic dominance of a nonneutralizing epitope over a highly conserved neutralizing epitope in the gp41 transmembrane envelope glycoprotein of human immunodeficiency virus type 1: its deletion leads to a strong neutralizing antibody response. Virology 266, 66–78.[CrossRef]
    [Google Scholar]
  15. Cleveland, S. M., Jones, T. D. & Dimmock, N. J. ( 2000b; ). Properties of a neutralizing antibody that recognizes a conformational form of epitope ERDRD in the gp41 C-terminal tail of human immunodeficiency virus type 1. J Gen Virol 81, 1251–1260.
    [Google Scholar]
  16. Cleveland, S. M., McLain, L., Cheung, L., Jones, T. D., Hollier, M. & Dimmock, N. J. ( 2003; ). A region of the C-terminal tail of the gp41 envelope glycoprotein of human immunodeficiency virus type 1 contains a neutralizing epitope: evidence for its exposure on the surface of the virion. J Gen Virol 84, 591–602.[CrossRef]
    [Google Scholar]
  17. Cordell, J., Moore, J. P., Dean, C. J., Klasse, P. J., Weiss, R. A. & McKeating, J. A. ( 1991; ). Rat monoclonal antibodies to nonoverlapping epitopes of human immunodeficiency virus type 1 gp120 block CD4 binding in vitro. Virology 185, 72–79.[CrossRef]
    [Google Scholar]
  18. Dalgleish, A. G., Chanh, T. C., Kennedy, R. C., Kanda, P., Clapham, P. R. & Weiss, R. A. ( 1988; ). Neutralization of diverse strains of HIV-1 by monoclonal antibodies raised against a gp41 synthetic peptide. Virology 165, 209–215.[CrossRef]
    [Google Scholar]
  19. Doranz, B. J., Baik, S. S. W. & Doms, R. W. ( 1999; ). Use of a gp120 binding assay to dissect the requirements and kinetics of human immunodeficiency virus fusion events. J Virol 73, 10346–10358.
    [Google Scholar]
  20. Durrani, Z., McInerney, T. L., McLain, L., Jones, T., Bellaby, T., Brennan, F. R. & Dimmock, N. J. ( 1998; ). Intranasal immunization with a plant virus expressing a peptide from HIV-1 gp41 stimulates better mucosal and systemic HIV-1-specific IgA and IgG than oral immunization. J Immunol Methods 220, 93–103.[CrossRef]
    [Google Scholar]
  21. Evans, D. J., McKeating, J. A., Meredith, J. M., Burke, K. L., Katrak, K., John, A., Ferguson, M., Minor, P. D., Weiss, R. A. & Almond, J. W. ( 1989; ). An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 339, 385–388.[CrossRef]
    [Google Scholar]
  22. Follis, K. E., Larson, S. J., Lu, M. & Nunberg, J. H. ( 2002; ). Genetic evidence that interhelical packing interactions in the gp41 core are critical for transition of the human immunodeficiency virus type 1 envelope glycoprotein to the fusion-active state. J Virol 76, 7356–7362.[CrossRef]
    [Google Scholar]
  23. Freed, E. O. ( 1998; ). HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251, 1–15.[CrossRef]
    [Google Scholar]
  24. Gallaher, W. R., Henderson, L. A., Fermin, C. & 7 other authors ( 1992; ). Membrane interactions of human immunodeficiency virus: attachment, fusion and cytopathology. In Advances in Membrane Fluidity; Membrane Interactions of HIV vol. 6, pp. 113–142. New York, NY: Wiley-Liss Inc.
  25. Golding, H., Zaitseva, M., de Rosny, E. & 7 other authors ( 2002; ). Dissection of human immunodeficiency virus type 1 entry with neutralizing antibodies to gp41 fusion intermediates. J Virol 76, 6780–6790.[CrossRef]
    [Google Scholar]
  26. He, Y., Vassell, R., Zaitseva, M., Nguyen, N., Yang, Z., Weng, Y. & Weiss, C. D. ( 2003; ). Peptides trap the human immunodeficiency virus type 1 envelope glycoprotein fusion intermediate at two sites. J Virol 77, 1666–1671.[CrossRef]
    [Google Scholar]
  27. Ho, D. D., Sarngadharan, M. G., Hirsch, M. S., Schooley, R. T., Rota, T. R., Kennedy, R. C., Chanh, T. C. & Sato, V. L. ( 1987; ). Human immunodeficiency virus neutralizing antibodies recognize several conserved domains on the envelope glycoprotein. J Virol 61, 2024–2028.
    [Google Scholar]
  28. Jackson, N. A. C., Levi, M., Wahren, B. & Dimmock, N. J. ( 1999; ). Properties and mechanism of action of a 17 amino acid, V3 loop-specific microantibody that binds to and neutralizes human immunodeficiency virus type 1 virions. J Gen Virol 80, 225–236.
    [Google Scholar]
  29. Jones, P. L. St J., Korte, T. & Blumenthal, R. ( 1998; ). Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem 273, 404–409.[CrossRef]
    [Google Scholar]
  30. Kennedy, R. C., Henkel, R. D., Pauletti, D., Allan, J. S., Lee, T. H., Essex, M. & Dreesman, G. R. ( 1986; ). Antiserum to a synthetic peptide recognizes the HTLV-III envelope glycoprotein. Science 231, 1556–1559.[CrossRef]
    [Google Scholar]
  31. Konopka, K., Pretzer, E., Celada, F. & Düzgünes, N. ( 1995; ). A monoclonal antibody to the gp120-CD4 complex has differential effects on HIV-induced syncytium formation and viral infectivity. J Gen Virol 76, 669–679.[CrossRef]
    [Google Scholar]
  32. Levy, J. A. ( 1998; ). HIV and the Pathogenesis of AIDS, 2nd edn. Herndon, VA: ASM Press.
  33. Lu, S., Putney, S. D. & Robinson, H. L. ( 1992; ). Human immunodeficiency virus type 1 entry into T cells: more-rapid escape from an anti-V3 loop than an antireceptor antibody. J Virol 66, 2547–2550.
    [Google Scholar]
  34. Lu, M., Stoller, M. O., Wang, S., Liu, J., Fagan, M. B. & Nunberg, J. H. ( 2001; ). Structural and functional analysis of interhelical interactions in the human immunodeficiency virus type 1 gp41 envelope glycoprotein by alanine-scanning mutagenesis. J Virol 75, 11146–11156.[CrossRef]
    [Google Scholar]
  35. Malashkevich, V. N., Chan, D. C., Chutowski, C. T. & Kim, P. S. ( 1998; ). Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc Natl Acad Sci U S A 95, 9134–9139.[CrossRef]
    [Google Scholar]
  36. Mbah, H. A., Burda, S., Gorny, M. K., Williams, C., Revesz, K., Zolla-Pazner, S. & Nyambi, P. N. ( 2001; ). Effect of soluble CD4 on exposure of epitopes on primary, intact, native human immunodeficiency virus type 1 virions of different genetic clades. J Virol 75, 7785–7788.[CrossRef]
    [Google Scholar]
  37. McInerney, T. L. & Dimmock, N. J. ( 2001; ). Postattachment neutralization of a primary strain of HIV type 1 in peripheral blood mononuclear cells is mediated by CD4-specific antibodies but not by a glycoprotein 120-specific antibody that gives potent standard neutralization. AIDS Res Hum Retroviruses 17, 1645–1654.[CrossRef]
    [Google Scholar]
  38. McKeating, J. A., Cordell, J. A., Dean, C. J. & Balfe, P. ( 1992; ). Synergistic interaction between ligands binding to the CD4 binding site and V3 domain of human immunodeficiency virus type I gp120. Virology 191, 732–742.[CrossRef]
    [Google Scholar]
  39. McLain, L. & Dimmock, N. J. ( 1994; ). Single- and multi-hit kinetics of immunoglobulin G neutralization of human immunodeficiency virus type 1 by monoclonal antibodies. J Gen Virol 75, 1457–1460.[CrossRef]
    [Google Scholar]
  40. McLain, L., Porta, C., Lomonossoff, G. P., Durrani, Z. & Dimmock, N. J. ( 1995; ). Human immunodeficiency virus type 1-neutralizing antibodies raised to a glycoprotein 41 peptide expressed on the surface of a plant virus. AIDS Res Hum Retroviruses 11, 327–334.[CrossRef]
    [Google Scholar]
  41. McLain, L., Durrani, Z., Wisniewski, L. A., Porta, C., Lomonossoff, G. P. & Dimmock, N. J. ( 1996a; ). A plant virus-HIV-1 chimera stimulates antibody that neutralizes HIV-1. In Vaccine 96, pp. 311–316. Edited by F. Brown, D. R. Burton, J. Collier, J. Mekalonos & E. Norrby. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. McLain, L., Durrani, Z., Wisniewski, L. A., Porta, C., Lomonossoff, G. P. & Dimmock, N. J. ( 1996b; ). Stimulation of neutralizing antibodies to human immunodeficiency virus type 1 in three strains of mice immunized with a 22 amino acid peptide of gp41 expressed on the surface of a plant virus. Vaccine 14, 799–810.[CrossRef]
    [Google Scholar]
  43. McLain, L., Brown, J. L., Cheung, L., Reading, S. A., Parry, C., Jones, T. D., Cleveland, S. M. & Dimmock, N. J. ( 2001; ). Different effects of a single amino acid substitution on three epitopes in the gp41 C-terminal loop of a neutralizing antibody escape mutant of human immunodeficiency virus type 1. Arch Virol 146, 157–166.[CrossRef]
    [Google Scholar]
  44. Mulligan, M. J., Yamshchikov, G. V., Ritter, G. D. Jr, Gao, F., Jin, M. J., Nail, C. D., Spies, C. P., Hahn, B. H. & Compans, R. W. ( 1992; ). Cytoplasmic domain truncation enhances fusion activity by the exterior glycoprotein complex of human immunodeficiency virus type 2 in certain cell types. J Virol 66, 3971–3975.
    [Google Scholar]
  45. Munoz-Barroso, I., Durell, S., Sakaguchi, K., Appella, E. & Blumenthal, R. ( 1998; ). Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide. J Cell Biol 140, 315–323.[CrossRef]
    [Google Scholar]
  46. Newton, S. M. C., Joys, T. M., Anderson, S. A., Kennedy, R. C., Hovi, M. E. & Stocker, B. A. D. ( 1995; ). Expression and immunogenicity of an 18-residue epitope of HIV1 gp41 inserted in the flagellar protein of a Salmonella live vaccine. Res Microbiol 146, 203–216.[CrossRef]
    [Google Scholar]
  47. Pelchen-Matthews, A., Clapham, P. & Marsh, M. ( 1995; ). Role of CD4 endocytosis in human immunodeficiency virus. J Virol 69, 8164–8168.
    [Google Scholar]
  48. Ratner, L., Haseltine, W., Patarca, R. & 16 other authors ( 1985; ). Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277–284.[CrossRef]
    [Google Scholar]
  49. Reading, S. A. ( 2003; ). Antibodies to the envelope protein of HIV-1. PhD thesis. University of Warwick, UK.
  50. Reading, S. A., Heap, C. J. & Dimmock, N. J. ( 2003; ). A novel monoclonal antibody specific for the C-terminal tail of the gp41 envelope transmembrane protein of human immunodeficiency virus type 1 that preferentially neutralizes virus after it has attached to the target cell and inhibits the production of infectious progeny. Virology 315, 362–372.[CrossRef]
    [Google Scholar]
  51. Rieber, E. P., Federle, C., Reiter, C., Krauss, S., Gürtler, L., Eberle, J., Deinhardt, F. & Riethmüller, G. ( 1992; ). The monoclonal CD4 antibody M-T413 inhibits cellular infection with human immunodeficiency virus after viral attachment to the cell membrane: an approach to postexposure prophylaxis. Proc Natl Acad Sci U S A 89, 10792–10796.[CrossRef]
    [Google Scholar]
  52. Ritter, G. D. Jr, Mulligan, M. J., Lydy, S. L. & Compans, R. W. ( 1993; ). Cell fusion activity of the simian immunodeficiency virus envelope protein is modulated by the intracytoplasmic domain. Virology 197, 255–264.[CrossRef]
    [Google Scholar]
  53. Sattentau, Q. J. & Moore, J. P. ( 1991; ). Conformational changes induced in the human immunodeficiency virus glycoprotein by soluble CD4 binding. J Exp Med 174, 407–415.[CrossRef]
    [Google Scholar]
  54. Sattentau, Q. J., Moore, J. P., Vignaux, F., Traincard, F. & Poignard, P. ( 1993; ). Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J Virol 67, 7383–7393.
    [Google Scholar]
  55. Schirmer, T. ( 1998; ). General and specific porins from bacterial outer membranes. J Struct Biol 121, 101–109.[CrossRef]
    [Google Scholar]
  56. Schirmer, T. & Cowan, S. W. ( 1993; ). Prediction of membrane-spanning β-strands and its application to maltoporin. Protein Sci 2, 1361–1363.[CrossRef]
    [Google Scholar]
  57. Simmons, G., McKnight, A., Takeuchi, Y., Hoshino, H. & Clapham, P. R. ( 1995; ). Cell-to-cell fusion, but not virus entry in macrophages by T-cell line tropic HIV-1 strains: a V3 loop-determined restriction. Virology 209, 696–700.[CrossRef]
    [Google Scholar]
  58. Sodroski, J., Goh, W. C., Rosen, C., Campbell, K. & Haseltine, W. A. ( 1986; ). Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322, 470–474.[CrossRef]
    [Google Scholar]
  59. Spies, C. P. & Compans, R. W. ( 1994; ). Effects of cytoplasmic domain length on cell surface expression and syncytium-forming capacity of the simian immunodeficiency virus envelope glycoprotein. Virology 203, 8–19.[CrossRef]
    [Google Scholar]
  60. Srivastava, K. K., Frenandez-Larsson, R., Zinkus, D. M. & Robinson, H. L. ( 1991; ). Human immunodeficiency virus type 1 NL4-3 replication in four T-cell lines: rate and efficiency of entry, a major determinant of permissiveness. J Virol 65, 3900–3902.
    [Google Scholar]
  61. Sullivan, N., Sun, Y., Sattentau, Q. & 7 other authors ( 1998; ). CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 72, 4694–4703.
    [Google Scholar]
  62. Tan, K., Liu, J.-H., Wang, J.-H., Shen, S. & Lu, M. ( 1997; ). Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci U S A 94, 12303–12308.[CrossRef]
    [Google Scholar]
  63. Thali, M., Moore, J. P., Furman, C., Charles, M., Ho, D. D., Robinson, J. & Sodroski, J. ( 1993; ). Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. J Virol 67, 3978–3988.
    [Google Scholar]
  64. Vella, C., Ferguson, M., Dunn, G., Meloen, R., Langedijk, H., Evans, D. & Minor, P. D. ( 1993; ). Characterization and primary structure of a human immunodeficiency virus type 1 (HIV-1) neutralization domain as presented by a poliovirus type 1/HIV-1 chimera. J Gen Virol 74, 2603–2607.[CrossRef]
    [Google Scholar]
  65. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. ( 1997; ). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430.[CrossRef]
    [Google Scholar]
  66. West, J. T., Johnston, P. B., Dubay, S. R. & Hunter, E. ( 2001; ). Mutations within the putative membrane-spanning domain of the simian immunodeficiency virus transmembrane glycoprotein define the minimal requirements for fusion, incorporation and infectivity. J Virol 75, 9601–9612.[CrossRef]
    [Google Scholar]
  67. Wilk, T., Pfeiffer, T. & Bosch, V. ( 1992; ). Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product. Virology 189, 167–177.[CrossRef]
    [Google Scholar]
  68. Xiang, S. H., Doka, N., Choudhary, R. K., Sodroski, J. & Robinson, J. E. ( 2002; ). Characterization of CD4-induced epitopes on the HIV type 1 gp120 envelope glycoprotein recognized by neutralizing human monoclonal antibodies. AIDS Res Hum Retroviruses 18, 1207–1217.[CrossRef]
    [Google Scholar]
  69. Zingler, K. & Littman, D. R. ( 1993; ). Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases Env incorporation into particles and fusogenicity and infectivity. J Virol 67, 2824–2831.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80414-0
Loading
/content/journal/jgv/10.1099/vir.0.80414-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error