1887

Abstract

The envelope glycoprotein located at the outermost surface of the flavivirus particle mediates entry of virus into host cells. In this study, the involvement of domain III of West Nile virus (WNV-DIII) envelope protein in binding to host cell surface was investigated. WNV-DIII was first expressed as a recombinant protein and purified after a solubilization and refolding procedure. The refolded WNV-DIII protein displays a content of -sheets consistent with known homologous structures of other flavivirus envelope DIII, shown by using circular dichroism analysis. Purified recombinant WNV-DIII protein was able to inhibit WNV entry into Vero cells and C6/36 mosquito cells. Recombinant WNV-DIII only partially blocked the entry of dengue-2 (Den 2) virus into Vero cells. However, entry of Den 2 virus into C6/36 was blocked effectively by recombinant WNV-DIII. Murine polyclonal serum produced against recombinant WNV-DIII protein inhibited infection with WNV and to a much lesser extent with Den 2 virus, as demonstrated by plaque neutralization assays. Together these results provided strong evidence that immunoglobulin-like DIII of WNV envelope protein is responsible for binding to receptor on the surface of host cells. The data also suggest that similar attachment molecule(s) or receptor(s) were used by WNV and Den 2 virus for entry into C6/36 mosquito cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80411-0
2005-02-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860405.html?itemId=/content/journal/jgv/10.1099/vir.0.80411-0&mimeType=html&fmt=ahah

References

  1. Anderson, R. ( 2003; ). Manipulation of cell surface macromolecules by flaviviruses. Adv Virus Res 59, 229–274.
    [Google Scholar]
  2. Beasley, D. W. C. & Barrett, A. D. T. ( 2002; ). Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol 76, 13097–13100.[CrossRef]
    [Google Scholar]
  3. Bhardwaj, S., Holbrook, M., Shope, R. E., Barrett, A. D. T. & Watowich, S. J. ( 2001; ). Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J Virol 75, 4002–4007.[CrossRef]
    [Google Scholar]
  4. Bielefeldt-Ohmann, H., Meyer, M., Fitzpatrick, D. R. & Mackenzie, J. S. ( 2001; ). Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains. Virus Res 73, 81–89.[CrossRef]
    [Google Scholar]
  5. Boctor, F. N., Calisher, C. H. & Peter, J. B. ( 1989; ). Dot-ELISA for serodiagnosis of human infections due to Western equine encephalitis virus. J Virol Methods 26, 305–311.[CrossRef]
    [Google Scholar]
  6. Bressanelli, S., Stiasny, K., Allison, S. L., Stura, E. A., Duquerroy, S., Lescar, J., Heinz, F. X. & Rey, F. A. ( 2004; ). Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23, 728–738.[CrossRef]
    [Google Scholar]
  7. CDC ( 1999; ). Update: West Nile virus encephalitis – New York 1999. MMWR Morbid Mortal Wkly Rep 48, 944–946.
    [Google Scholar]
  8. CDC ( 2002; ). Update: West Nile virus encephalitis – New York 1999. MMWR Morbid Mortal Wkly Rep 51, 1135–1136.
    [Google Scholar]
  9. Chambers, T. J., Halevy, M., Nestorowicz, A., Rice, C. M. & Lustig, S. ( 1998; ). West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79, 2375–2380.
    [Google Scholar]
  10. Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. ( 1997; ). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3, 866–871.[CrossRef]
    [Google Scholar]
  11. Chu, J. J. H. & Ng, M. L. ( 2002; ). Trafficking mechanism of West Nile (Sarafend) virus structural proteins. J Med Virol 67, 127–136.[CrossRef]
    [Google Scholar]
  12. Chu, J. J. H. & Ng, M. L. ( 2003; ). Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection. Virology 312, 458–469.[CrossRef]
    [Google Scholar]
  13. Chu, J. J. H. & Ng, M. L. ( 2004; ). Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78, 10543–10555.[CrossRef]
    [Google Scholar]
  14. George, S., Gourine-Devi, M., Rao, J. A., Prasad, S. R. & Pavri, K. M. ( 1984; ). Isolation of West Nile virus from the brain of children who had died of encephalitis. Bull W H O 62, 879–882.
    [Google Scholar]
  15. Heinz, F. X. & Allison, S. L. ( 2003; ). Flavivirus structure and membrane fusion. Adv Virus Res 59, 63–97.
    [Google Scholar]
  16. Hung, J. J., Hsieh, M. T., Young, M. J., Kao, C. L., King, C. C. & Chang, W. ( 2004; ). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78, 378–388.[CrossRef]
    [Google Scholar]
  17. Kroschewski, H., Allison, S. L., Heinz, F. X. & Mandl, C. W. ( 2003; ). Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308, 92–100.[CrossRef]
    [Google Scholar]
  18. Kuhn, R. J., Zhang, W., Rossmann, M. G. & 9 other authors ( 2002; ). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725.[CrossRef]
    [Google Scholar]
  19. Lescar, J., Roussel, A., Wien, M. W., Navaza, J., Fuller, S. D., Wengler, G., Wengler, G. & Rey, F. A. ( 2001; ). The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148.[CrossRef]
    [Google Scholar]
  20. Lin, C. W. & Wu, S.-C. ( 2003; ). A functional epitope determinant on domain III of the Japanese encepahalitis envelope protein interacted with neutralizing-antibody combining sites. J Virol 77, 2600–2606.[CrossRef]
    [Google Scholar]
  21. Mandl, C. W., Kroschewski, H., Allison, S. L., Kofler, R., Holzmann, H., Meixner, T. & Heinz, F. X. ( 2001; ). Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol 75, 5627–5637.[CrossRef]
    [Google Scholar]
  22. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef]
    [Google Scholar]
  23. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2004; ). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319.[CrossRef]
    [Google Scholar]
  24. Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. ( 2003; ). Structure of West-Nile virus. Science 302, 248.[CrossRef]
    [Google Scholar]
  25. Murphy, F. A. ( 1980; ). Togavirus morphology and morphogenesis. In The Togavirus. Biology, Structure, Replication, pp. 241–316. Edited by R. W. Schlesinger. New York: Academic Press.
  26. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. ( 1995; ). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298.[CrossRef]
    [Google Scholar]
  27. Roehrig, J. T. ( 2003; ). Antigenic structure of flavivirus proteins. Adv Virus Res 59, 141–175.
    [Google Scholar]
  28. Roehrig, J. T., Bolin, R. A. & Kelly, R. G. ( 1998; ). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246, 317–328.[CrossRef]
    [Google Scholar]
  29. Smithburn, K. C., Taylor, R. M., Rizk, F. & Kader, A. ( 1954; ). Immunity to certain arthropod-borne viruses among indigenous residents of Egypt. Am J Trop Med Hyg 3, 9–18.
    [Google Scholar]
  30. Sreerama, N. & Woody, R. W. ( 2000; ). Estimation of protein secondary structure from circular dichroism spectra: comparison of contin, selcon, and cdsstr methods with an expanded reference set. Anal Biochem 287, 252–260.[CrossRef]
    [Google Scholar]
  31. Tetin, S. Y., Prendergast, F. G. & Venyaminov, S. Y. ( 2003; ). Accuracy of protein secondary structure determination from circular dichroism spectra based on immunoglobulin examples. Anal Biochem 321, 183–187.[CrossRef]
    [Google Scholar]
  32. van der Most, R. G., Corver, J. & Strauss, J. H. ( 1999; ). Mutagenesis of the RGD motif in the yellow fever virus 17D envelope protein. Virology 265, 83–95.[CrossRef]
    [Google Scholar]
  33. Volk, D. E., Beasley, D. W. C., Kallick, D. A., Holbrook, M. R., Barrett, A. D. T. & Gorenstein, D. G. ( 2004; ). Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. J Biol Chem 279, 38755–38761.[CrossRef]
    [Google Scholar]
  34. Wengler, G. & Wengler, G. ( 1989; ). Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol 63, 2521–2526.
    [Google Scholar]
  35. White, M. A., Liu, D., Holbrook, M. R., Shope, R. E., Barrett, A. D. T. & Fox, R. O. ( 2003; ). Crystallization and preliminary X-ray diffraction analysis of Langat virus envelope protein domain III. Acta Crystallogr D Biol Crystallogr 59, 1049–1051.[CrossRef]
    [Google Scholar]
  36. Wu, K. P., Wu, C. W., Tsao, Y. P., Kuo, T. W., Lou, Y. C., Lin, C. W., Wu, S. C. & Cheng, J. W. ( 2003; ). Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem 278, 46007–46013.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80411-0
Loading
/content/journal/jgv/10.1099/vir.0.80411-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error