1887

Abstract

The complete genomes of three human H5N1 influenza isolates were characterized, together with the haemagglutinin (HA) and neuraminidase (NA) genes from two additional human isolates and one chicken isolate. These six influenza isolates were obtained from four different provinces of Thailand during the avian influenza outbreak in Asia from late 2003 to May 2004. All six Thailand isolates contained multiple basic amino acids at the cleavage site in the HA gene. Amino acid residues at the receptor-binding site of the five human viruses were similar to those of the chicken virus and other H5N1 viruses from Hong Kong. The presence of amantadine resistance in the Thailand viruses isolated during this outbreak was suggested by a fixed mutation in M2 and confirmed by a phenotypic assay. All genomic segments of the Thailand viruses clustered with the recently described genotype Z. The Thailand viruses contained more avian-specific residues than the 1997 Hong Kong H5N1 viruses, suggesting that the virus may have adapted to allow a more efficient spread in avian species.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80368-0
2005-02-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860423.html?itemId=/content/journal/jgv/10.1099/vir.0.80368-0&mimeType=html&fmt=ahah

References

  1. Castrucci, M. R. & Kawaoka, Y. ( 1993; ). Biologic importance of neuraminidase stalk length in influenza A virus. J Virol 67, 759–764.
    [Google Scholar]
  2. CDC/WHO Avian Influenza Response Team ( 2004; ). Outbreaks of avian influenza A (H5N1) in Asia and interim recommendations for evaluation and reporting of suspected cases – United States, 2004. Morb Mortal Wkly Rep 53, 97–99.
    [Google Scholar]
  3. Chotpitayasunondh, T., Lochindarat, S., Srisan, P., Chokepaibulkit, K., Weerakul, J., Maneerattanaporn, M., Sawanpanyalert, P., World Health Organization Thailand & CDC International Emerging Infections Program Thailand ( 2004; ). Cases of influenza A (H5N1) – Thailand, 2004. Morb Mortal Wkly Rep 53, 100–102.
    [Google Scholar]
  4. Claas, E. C. J., Osterhaus, A. D. M. E., Van Beek, R., De Jong, J. C., Rimmelzwaan, G. F., Senne, D. A., Krauss, S., Shortridge, K. F. & Webster, R. G. ( 1998; ). Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477.[CrossRef]
    [Google Scholar]
  5. Cross, K. J., Burleigh, L. M. & Steinhauer, D. A. ( 2001; ). Mechanisms of cell entry by influenza virus. In Expert Reviews in Molecular Medicine. Available at http://www-ermm.cbcu.cam.ac.uk
  6. Felsenstein, J. ( 1993; ). phylip: Phylogeny Interference Package, version 3.5c. University of Washington, Seattle, WA, USA.
  7. Fouchier, R. A. M., Schneeberger, P. M., Rozendaal, F. W. & 11 other authors ( 2004; ). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101, 1356–1361.[CrossRef]
    [Google Scholar]
  8. Gao, P., Watanabe, S., Ito, T., Goto, H., Wells, K., McGregor, M., Cooley, A. J. & Kawaoka, Y. ( 1999; ). Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol 73, 3184–3189.
    [Google Scholar]
  9. Guan, Y., Peiris, J. S. M., Lipatov, A. S., Ellis, T. M., Dyrting, K. C., Krauss, S., Zhang, L. J., Webster, R. G. & Shortridge, K. F. ( 2002; ). Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99, 8950–8955.[CrossRef]
    [Google Scholar]
  10. Guan, Y., Poon, L. L. M., Cheung, C. Y. & 13 other authors ( 2004; ). H5N1 influenza A protean pandemic threat. Proc Natl Acad Sci U S A 101, 8156–8161.[CrossRef]
    [Google Scholar]
  11. Hatta, M. & Kawaoka, Y. ( 2002; ). The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol 10, 340–344.[CrossRef]
    [Google Scholar]
  12. Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. ( 2001; ). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842.[CrossRef]
    [Google Scholar]
  13. Hien, T. T., Liem, N. T., Dung, N. T. & 26 other authors ( 2004; ). Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 350, 1179–1188.[CrossRef]
    [Google Scholar]
  14. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275–2289.[CrossRef]
    [Google Scholar]
  15. Horimoto, T. & Kawaoka, Y. ( 1994; ). Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol 68, 3120–3128.
    [Google Scholar]
  16. Koopmans, M., Wilbrink, B., Conyn, M. & 8 other authors ( 2004; ). Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363, 587–593.[CrossRef]
    [Google Scholar]
  17. Kurtz, J., Manwell, R. J. & Banks, J. ( 1996; ). Avian influenza virus isolated from a woman with conjunctivitis. Lancet 348, 901–902.[CrossRef]
    [Google Scholar]
  18. Li, K. S., Guan, Y., Wang, J. & 19 other authors ( 2004; ). Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213.[CrossRef]
    [Google Scholar]
  19. Matrosovich, M., Zhou, N., Kawaoka, Y. & Webster, R. ( 1999; ). The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73, 1146–1155.
    [Google Scholar]
  20. Nicholas, K. B., Nicholas, H. B., Jr & Deerfield, D. W., II ( 1997; ). GeneDoc: analysis and visualization of genetic variation. Embnet News 4, 1–4.
    [Google Scholar]
  21. Nicholson, K. G., Wood, J. M. & Zambon, M. ( 2003; ). Influenza. Lancet 362, 1733–1745.[CrossRef]
    [Google Scholar]
  22. Nobusawa, E., Aoyama, T., Kato, H., Suzuki, Y., Tateno, Y. & Nakajima, K. ( 1991; ). Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinin of influenza A viruses. Virology 182, 475–485.[CrossRef]
    [Google Scholar]
  23. Page, R. D. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  24. Peiris, M., Yuen, K. Y., Leung, C. W., Chan, K. H., Ip, P. L., Lai, R. W., Orr, W. K. & Shortridge, K. F. ( 1999; ). Human infection with influenza H9N2. Lancet 354, 916–917.[CrossRef]
    [Google Scholar]
  25. Peiris, J. S. M., Yu, W. C., Leung, C. W. & 9 other authors ( 2004; ). Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363, 617–619.[CrossRef]
    [Google Scholar]
  26. Shaw, M., Cooper, L., Xu, X. & 10 other authors ( 2002; ). Molecular changes associated with the transmission of avian influenza A H5N1 and H9N2 viruses to humans. J Med Virol 66, 107–114.[CrossRef]
    [Google Scholar]
  27. Shinya, K., Hamn, S., Hatta, M., Ito, H., Ito, T. & Kawaoka, Y. ( 2004; ). PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320, 258–266.[CrossRef]
    [Google Scholar]
  28. Subbarao, K. & Shaw, M. W. ( 2000; ). Molecular aspects of avian influenza (H5N1) viruses isolated from humans. Rev Med Virol 10, 337–348.[CrossRef]
    [Google Scholar]
  29. Subbarao, K., Klimov, A., Katz, J. & 13 other authors ( 1998; ). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396.[CrossRef]
    [Google Scholar]
  30. Suzuki, H., Saito, R., Masuda, H., Oshitani, H., Sato, M. & Sato, I. ( 2003; ). Emergence of amantadine-resistant influenza A viruses: epidemiological study. J Infect Chemother 9, 195–200.[CrossRef]
    [Google Scholar]
  31. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  32. Webster, R., Cox, N. & Stohr, K. ( 2002; ). WHO Manual on Animal Influenza Diagnosis and Surveillance. WHO: WHO Global Influenza Programme.
  33. Weis, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J. & Wiley, D. C. ( 1988; ). Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426–431.[CrossRef]
    [Google Scholar]
  34. Yuen, K. Y., Chan, P. K. S., Peiris, M. & 8 other authors ( 1998; ). Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467–471.[CrossRef]
    [Google Scholar]
  35. Zambon, M. C. ( 2001; ). The pathogenesis of influenza in humans. Rev Med Virol 11, 227–241.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80368-0
Loading
/content/journal/jgv/10.1099/vir.0.80368-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error