1887

Abstract

Prion-induced neuronal injury is associated with prostaglandin E production, a process that can be reproduced in tissue-culture models of prion disease. In the present study, neuronal phospholipase A was activated by glycosylphosphatidylinositols (GPIs) isolated from the cellular prion protein (PrP) or from disease-associated isoforms (PrP), resulting in prostaglandin E production, but not by GPIs isolated from Thy-1. The ability of GPIs to activate neuronal phospholipase A was lost following the removal of acyl chains or cleavage of the phosphatidylinositol–glycan linkage, and was inhibited by a mAb that recognized phosphatidylinositol. In competition assays, pretreatment of neurons with partial GPIs, inositol monophosphate or sialic acid reduced the production of prostaglandin E in response to a synthetic miniprion (sPrP106), a synthetic correlate of a PrP species found in Gerstmann–Sträussler–Scheinker disease (HuPrP82–146), prion preparations or high concentrations of PrP-GPIs. In addition, neurons treated with inositol monophosphate or sialic acid were resistant to the otherwise toxic effects of sPrP106, HuPrP82–146 or prion preparations. This protective effect was selective, as inositol monophosphate- or sialic acid-treated neurons remained susceptible to the toxicity of arachidonic acid or platelet-activating factor. Addition of PrP-GPIs to cortical neuronal cultures increased caspase-3 activity, a marker of apoptosis that is elevated in prion diseases. In contrast, treatment of such cultures with inositol monophosphate or sialic acid greatly reduced sPrP106-induced caspase-3 activity and, in co-cultures, reduced the killing of sPrP106-treated neurons by microglia. These results implicate phospholipase A activation by PrP-GPIs as an early event in prion-induced neurodegeneration.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80366-0
2004-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/12/vir853797.html?itemId=/content/journal/jgv/10.1099/vir.0.80366-0&mimeType=html&fmt=ahah

References

  1. Bate, C. A. W. & Kwiatkowski, D. ( 1994; ). A monoclonal antibody that recognizes phosphatidylinositol inhibits induction of tumor necrosis factor alpha by different strains of Plasmodium falciparum. Infect Immun 62, 5261–5266.
    [Google Scholar]
  2. Bate, C. A., Boshuizen, R. S., Langeveld, J. P. M. & Williams, A. ( 2002; ). Temporal and spatial relationship between the death of PrP-damaged neurones and microglial activation. Neuroreport 13, 1695–1700.[CrossRef]
    [Google Scholar]
  3. Bate, C., Salmona, M., Diomede, L. & Williams, A. ( 2004a; ). Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J Biol Chem 279, 14983–14990.[CrossRef]
    [Google Scholar]
  4. Bate, C. A., Salmona, M. & Williams, A. ( 2004b; ). The role of platelet activating factor in prion and amyloid-β neurotoxicity. Neuroreport 15, 509–513.[CrossRef]
    [Google Scholar]
  5. Bonetto, V., Massignan, T., Chiesa, R. & 8 other authors ( 2002; ). Synthetic miniprion PrP106. J Biol Chem 277, 31327–31334.[CrossRef]
    [Google Scholar]
  6. Brown, D. R., Herms, J. & Kretzschmar, H. A. ( 1994; ). Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5, 2057–2060.[CrossRef]
    [Google Scholar]
  7. Brown, D. R., Schmidt, B. & Kretzschmar, H. A. ( 1996; ). Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345–347.[CrossRef]
    [Google Scholar]
  8. Forloni, G., Angeretti, N., Chiesa, R., Monzani, E., Salmona, M., Bugiani, O. & Tagliavini, F. ( 1993; ). Neurotoxicity of a prion protein fragment. Nature 362, 543–546.[CrossRef]
    [Google Scholar]
  9. Frick, W., Bauer, A., Bauer, J., Wied, S. & Müller, G. ( 1998; ). Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action. Biochemistry 37, 13421–13436.[CrossRef]
    [Google Scholar]
  10. Giese, A., Groschup, M. H., Hess, B. & Kretzschmar, H. A. ( 1995; ). Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 5, 213–221.[CrossRef]
    [Google Scholar]
  11. Hope, J., Shearman, M. S., Baxter, H. C., Chong, A., Kelly, S. M. & Price, N. C. ( 1996; ). Cytotoxicity of prion protein peptide (PrP106–126) differs in mechanism from the cytotoxic activity of the Alzheimer's disease amyloid peptide, A β25–35. Neurodegeneration 5, 1–11.[CrossRef]
    [Google Scholar]
  12. Jamieson, E. C. A., Jeffrey, M., Ironside, J. W. & Fraser, J. R. ( 2001; ). Activation of Fas and caspase 3 precedes PrP accumulation in 87V scrapie. Neuroreport 12, 3567–3572.[CrossRef]
    [Google Scholar]
  13. Jeffrey, M., Halliday, W. G., Bell, J., Johnston, A. R., Macleod, N. K., Ingham, C., Sayers, A. R., Brown, D. A. & Fraser, J. R. ( 2000; ). Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26, 41–54.[CrossRef]
    [Google Scholar]
  14. Mayor, S. & Riezman, H. ( 2004; ). Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol 5, 110–120.[CrossRef]
    [Google Scholar]
  15. Minghetti, L., Greco, A., Cardone, F. & 7 other authors ( 2000; ). Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 59, 866–871.
    [Google Scholar]
  16. Minghetti, L., Cardone, F., Greco, A., Puopolo, M., Levi, G., Green, A. J. E., Knight, R. & Pocchiari, M. ( 2002; ). Increased CSF levels of prostaglandin E2 in variant Creutzfeldt–Jakob disease. Neurology 58, 127–129.[CrossRef]
    [Google Scholar]
  17. Pan, K.-M., Baldwin, M., Nguyen, J. & 8 other authors ( 1993; ). Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90, 10962–10966.[CrossRef]
    [Google Scholar]
  18. Prusiner, S. B. ( 1982; ). Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.[CrossRef]
    [Google Scholar]
  19. Prusiner, S. B. ( 1998; ). Prions. Proc Natl Acad Sci U S A 95, 13363–13383.[CrossRef]
    [Google Scholar]
  20. Rudd, P. M., Wormald, M. R., Wing, D. R., Prusiner, S. B. & Dwek, R. A. ( 2001; ). Prion glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry 40, 3759–3766.[CrossRef]
    [Google Scholar]
  21. Salmona, M., Morbin, M., Massignan, T. & 14 other authors ( 2003; ). Structural properties of Gerstmann-Sträussler-Scheinker disease amyloid protein. J Biol Chem 278, 48146–48153.[CrossRef]
    [Google Scholar]
  22. Solforosi, L., Criado, J. R., McGavern, D. B. & 12 other authors ( 2004; ). Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516.[CrossRef]
    [Google Scholar]
  23. Stahl, N., Baldwin, M. A., Hecker, R., Pan, K.-M., Burlingame, A. L. & Prusiner, S. B. ( 1992; ). Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry 31, 5043–5053.[CrossRef]
    [Google Scholar]
  24. Taraboulos, A., Scott, M., Semenov, A., Avraham, D., Laszlo, L. & Prusiner, S. B. ( 1995; ). Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129, 121–132.[CrossRef]
    [Google Scholar]
  25. Vijaykumar, M., Naik, R. S. & Gowda, D. C. ( 2001; ). Plasmodium falciparum glycosylphosphatidylinositol-induced TNF-α secretion by macrophages is mediated without membrane insertion or endocytosis. J Biol Chem 276, 6909–6912.[CrossRef]
    [Google Scholar]
  26. Williams, A. E., van Dam, A.-M., Man-A-Hing, W. K. H., Berkenbosch, F., Eikelenboom, P. & Fraser, H. ( 1994; ). Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infected mice. Brain Res 654, 200–206.[CrossRef]
    [Google Scholar]
  27. Williams, A., Lucassen, P. J., Ritchie, D. & Bruce, M. ( 1997a; ). PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144, 433–438.[CrossRef]
    [Google Scholar]
  28. Williams, A., Van Dam, A.-M., Ritchie, D., Eikelenboom, P. & Fraser, H. ( 1997b; ). Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res 754, 171–180.[CrossRef]
    [Google Scholar]
  29. Yang, H. C., Farooqui, A. A. & Horrocks, L. A. ( 1994; ). Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem Biophys Res Commun 199, 1158–1166.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80366-0
Loading
/content/journal/jgv/10.1099/vir.0.80366-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error