1887

Abstract

Due to their extremely high genetic diversity, which is a direct consequence of high mutation rates, RNA viruses are often described as molecular quasispecies. According to this theory, RNA virus populations cannot be understood in terms of individual viral clones, as they are clouds of interconnected mutants, but this prediction has not yet been demonstrated experimentally. The goal of this study was to determine the fitness of individual clones sampled from a given RNA virus population, a necessary previous step to test the above prediction. To do so, limiting dilutions of a vesicular stomatitis virus population were employed to isolate single viral clones and their initial growth dynamics were followed, corresponding to the release of the first few hundred viral particles. This technique is useful for estimating basic fitness parameters, such as intracellular growth rate, viral yield per cell, rate at which cells are infected and time spent in cell-to-cell transmission. A combination of these parameters allows estimation of the fitness of individual clones, which seems to be determined mainly by their ability to complete infection cycles more quickly. Interestingly, fitness was systematically higher for initial clones than for their derived populations. In addition to environmental changes, such as cellular defence mechanisms, these differences are attributable to high RNA virus mutation rates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80359-0
2005-02-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860435.html?itemId=/content/journal/jgv/10.1099/vir.0.80359-0&mimeType=html&fmt=ahah

References

  1. Bordería, A. V. & Elena, S. F. ( 2002; ). r- and K-selection in experimental populations of vesicular stomatitis virus. Infect Genet Evol 2, 137–143.[CrossRef]
    [Google Scholar]
  2. Borgland, S. L., Bowen, G. P., Wong, N. C. W., Libermann, T. A. & Muruve, D. A. ( 2000; ). Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-κB. J Virol 74, 3941–3947.[CrossRef]
    [Google Scholar]
  3. Bulmer, M. ( 1994; ). Theoretical Evolutionary Ecology. Sunderland, MA: Sinauer Associates.
  4. Burch, C. L. & Chao, L. ( 2000; ). Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature 406, 625–628.[CrossRef]
    [Google Scholar]
  5. Chao, L. ( 1990; ). Fitness of RNA virus decreased by Muller's ratchet. Nature 348, 454–455.[CrossRef]
    [Google Scholar]
  6. Chao, L., Rang, C. U. & Wong, L. E. ( 2002; ). Distribution of spontaneous mutants and inferences about the replication mode of the RNA bacteriophage π6. J Virol 76, 3276–3281.[CrossRef]
    [Google Scholar]
  7. Cooper, V. S., Reiskind, M. H., Miller, J. A., Shelton, K. A., Walther, B. A., Elkinton, J. S. & Ewald, P. W. ( 2002; ). Timing of transmission and the evolution of virulence of an insect virus. Proc R Soc Lond B Biol Sci 269, 1161–1165.[CrossRef]
    [Google Scholar]
  8. Cromeans, T., Fields, H. A. & Sobsey, M. D. ( 1989; ). Replication kinetics and cytopathic effect of hepatitis A virus. J Gen Virol 70, 2051–2062.[CrossRef]
    [Google Scholar]
  9. Crow, J. & Kimura, M. ( 1970; ). Introduction to Population Genetics Theory. New York: Harper & Row.
  10. de Visser, J. A., Hermisson, J., Wagner, G. P. & 16 other authors ( 2003; ). Perspective: evolution and detection of genetic robustness. Evolution Int J Org Evolution 57, 1959–1972.
    [Google Scholar]
  11. Domingo, E. ( 2002; ). Quasispecies theory in virology. J Virol 76, 463–465.[CrossRef]
    [Google Scholar]
  12. Domingo, E., Sabo, D., Taniguchi, T. & Weissman, C. ( 1978; ). Nucleotide sequence heterogeneity of an RNA phage population. Cell 13, 735–744.[CrossRef]
    [Google Scholar]
  13. Domingo, E., Martínez-Salas, E., Sobrino, F. & 11 other authors ( 1985; ). The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance – a review. Gene 40, 1–8.
    [Google Scholar]
  14. Drake, J. W. & Holland, J. J. ( 1999; ). Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96, 13910–13913.[CrossRef]
    [Google Scholar]
  15. Duarte, E., Clarke, D., Moya, A., Domingo, E. & Holland, J. J. ( 1992; ). Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc Natl Acad Sci U S A 89, 6015–6019.[CrossRef]
    [Google Scholar]
  16. Ebert, D. & Bull, J. J. ( 2003; ). Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol 11, 15–20.[CrossRef]
    [Google Scholar]
  17. Eigen, M. ( 1996; ). On the nature of virus quasispecies. Trends Microbiol 4, 216–218.[CrossRef]
    [Google Scholar]
  18. Eigen, M., McCaskill, J. & Schuster, P. ( 1988; ). Molecular quasi-species. J Phys Chem 92, 6881–6891.[CrossRef]
    [Google Scholar]
  19. Elena, S. F. ( 2001; ). Evolutionary history conditions the timing of transmission in vesicular stomatitis virus. Infect Genet Evol 1, 151–159.[CrossRef]
    [Google Scholar]
  20. Elena, S. F. & Moya, A. ( 1999; ). Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J Evol Biol 12, 1078–1088.[CrossRef]
    [Google Scholar]
  21. Ellis, E. L. & Delbrück, M. ( 1938; ). The growth of bacteriophage. J Gen Physiol 22, 365–384.
    [Google Scholar]
  22. Escarmís, C., Carrillo, E. C., Ferrer, M., García Arriaza, J. F., Lopez, N., Tami, C., Verdaguer, N., Domingo, E. & Franze-Fernández, M. T. ( 1998; ). Rapid selection in modified BHK-21 cells of a foot-and-mouth disease virus variant showing alterations in cell tropism. J Virol 72, 10171–10179.
    [Google Scholar]
  23. Gong, Y., Trowbridge, R., Macnaughton, T. B., Westaway, E. G., Shannon, A. D. & Gowans, E. J. ( 1996; ). Characterization of RNA synthesis during a one-step growth curve and of the replication mechanism of bovine viral diarrhoea virus. J Gen Virol 77, 2729–2736.[CrossRef]
    [Google Scholar]
  24. Holland, J. J., de la Torre, J. C., Clarke, D. K. & Duarte, E. ( 1991; ). Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol 65, 2960–2967.
    [Google Scholar]
  25. Holmes, E. C. & Moya, A. ( 2002; ). Is the quasispecies concept relevant to RNA viruses? J Virol 76, 460–462.[CrossRef]
    [Google Scholar]
  26. Jenkins, G. M., Worobey, M., Woelk, C. H. & Holmes, E. C. ( 2001; ). Evidence for the non-quasispecies evolution of RNA viruses. Mol Biol Evol 18, 987–994.[CrossRef]
    [Google Scholar]
  27. Martínez, M. A., Verdaguer, N., Mateu, M. G. & Domingo, E. ( 1997; ). Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci U S A 94, 6798–6802.[CrossRef]
    [Google Scholar]
  28. Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. ( 1999; ). Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747.[CrossRef]
    [Google Scholar]
  29. Moya, A., Holmes, E. C. & González-Candelas, F. ( 2004; ). The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol 2, 279–288.[CrossRef]
    [Google Scholar]
  30. Muller, H. J. ( 1964; ). The relation of recombination to mutational advance. Mutat Res 106, 2–9.
    [Google Scholar]
  31. Muruve, D. A., Barnes, M. J., Stillman, I. E. & Libermann, T. A. ( 1999; ). Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 10, 965–976.[CrossRef]
    [Google Scholar]
  32. Neumann, A. U., Lam, N. P., Dahari, H., Gretch, D. R., Wiley, T. E., Layden, T. J. & Perelson, A. S. ( 1998; ). Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science 282, 103–107.[CrossRef]
    [Google Scholar]
  33. Novella, I. S., Duarte, E. A., Elena, S. F., Moya, A., Domingo, E. & Holland, J. J. ( 1995; ). Exponential increases of RNA virus fitness during large population transmissions. Proc Natl Acad Sci U S A 92, 5841–5844.[CrossRef]
    [Google Scholar]
  34. Novella, I. S., Hershey, C. L., Escarmis, C., Domingo, E. & Holland, J. J. ( 1999; ). Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. J Mol Biol 287, 459–465.[CrossRef]
    [Google Scholar]
  35. Pianka, E. R. ( 1970; ). On r- and K-selection. Am Nat 104, 952–957.
    [Google Scholar]
  36. Pienta, R. J. & Groupé, V. ( 1967; ). Growth curve and distribution of Rous sarcoma virus (Bryan) in Japanese quail. J Virol 1, 1122–1129.
    [Google Scholar]
  37. Schuster, P. & Swetina, J. ( 1988; ). Stationary mutant distributions and evolutionary optimization. Bull Math Biol 50, 635–660.[CrossRef]
    [Google Scholar]
  38. Sevilla, N., Ruiz-Jarabo, C. M., Gómez-Mariano, G., Baranowski, E. & Domingo, E. ( 1998; ). An RNA virus can adapt to the multiplicity of infection. J Gen Virol 79, 2971–2980.
    [Google Scholar]
  39. Smith, D. B., McAllister, J., Casino, C. & Simmonds, P. ( 1997; ). Virus ‘quasispecies’: making a mountain out of a molehill? J Gen Virol 78, 1511–1519.
    [Google Scholar]
  40. Turner, P. E. & Elena, S. F. ( 2000; ). Cost of host radiation in an RNA virus. Genetics 156, 1465–1470.
    [Google Scholar]
  41. Vandepol, S. B., Lefrancois, L. & Holland, J. J. ( 1986; ). Sequences of the major antibody binding epitopes of the Indiana serotype of vesicular stomatitis virus. Virology 148, 312–325.[CrossRef]
    [Google Scholar]
  42. Wagner, A. & Stadler, P. F. ( 1999; ). Viral RNA and evolved mutational robustness. J Exp Zool 285, 119–127.[CrossRef]
    [Google Scholar]
  43. Wain-Hobson, S. ( 1996; ). Running the gamut of retroviral variation. Trends Microbiol 4, 135–141.[CrossRef]
    [Google Scholar]
  44. Weaver, S. C., Brault, A. C., Kang, W. & Holland, J. J. ( 1999; ). Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J Virol 73, 4316–4326.
    [Google Scholar]
  45. Whelan, S. P. J., Ball, L. A., Barr, J. N. & Wertz, G. T. W. ( 1995; ). Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A 92, 8388–8392.[CrossRef]
    [Google Scholar]
  46. Wilke, C. O. & Adami, C. ( 2003; ). Evolution of mutational robustness. Mutat Res 522, 3–11.[CrossRef]
    [Google Scholar]
  47. Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E. & Adami, C. ( 2001; ). Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412, 331–333.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80359-0
Loading
/content/journal/jgv/10.1099/vir.0.80359-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error