1887

Abstract

Previous work from this laboratory has shown that expression of human cytomegalovirus (HCMV) immediate-early (IE) genes from the major immediate-early promoter (MIEP) is likely to be regulated by chromatin remodelling around the promoter affecting the acetylation state of core histone tails. The HCMV MIEP contains sequences that bind cellular transcription factors responsible for its negative regulation in undifferentiated, non-permissive cells. Ets-2 repressor factor (ERF) is one such factor that binds to such sequences and represses IE gene expression. Although it is not known how cellular transcription factors such as ERF mediate transcriptional repression of the MIEP, it is likely to involve differentiation-specific co-factors. In this study, the mechanism by which ERF represses HCMV IE gene expression was analysed. ERF physically interacts with the histone deacetylase, HDAC1, both and and this physical interaction between ERF and HDAC1 mediates repression of the MIEP. This suggests that silencing of viral IE gene expression, associated with histone deacetylation events around the MIEP, is mediated by differentiation-dependent cellular factors such as ERF, which specifically recruit chromatin remodellers to the MIEP in non-permissive cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80352-0
2005-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860535.html?itemId=/content/journal/jgv/10.1099/vir.0.80352-0&mimeType=html&fmt=ahah

References

  1. Andrews, P. W., Damjanov, I., Simon, D., Banting, G. S., Carlin, C., Dracopoli, N. C. & Fogh, J. ( 1984; ). Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 50, 147–162.
    [Google Scholar]
  2. Bain, M., Mendelson, M. & Sinclair, J. ( 2003; ). Ets-2 Repressor Factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J Gen Virol 84, 41–49.[CrossRef]
    [Google Scholar]
  3. Berger, S. L. ( 2002; ). Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12, 142–148.[CrossRef]
    [Google Scholar]
  4. Brehm, A., Miska, E. A., McCance, D. J., Reid, J. L., Bannister, A. J. & Kouzarides, T. ( 1998; ). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601.[CrossRef]
    [Google Scholar]
  5. Britt, W. J. ( 1998; ). Betaherpesviruses: cytomegalovirus, human herpesviruses 6 and 7. In Virology, 9th edn, pp. 339–350. Edited by B. W. J. Mahy & L. Collier. New York: Arnold.
  6. Bryant, L. A., Mixon, P., Davidson, M., Bannister, A. J., Kouzarides, T. & Sinclair, J. H. ( 2000; ). The human cytomegalovirus 86-kilodalton major immediate-early protein interacts physically and functionally with histone acetyltransferase P/CAF. J Virol 74, 7230–7237.[CrossRef]
    [Google Scholar]
  7. Caswell, R., Hagemeier, C., Chiou, C. J., Hayward, G., Kouzarides, T. & Sinclair, J. ( 1993; ). The human cytomegalovirus 86K immediate early (IE) 2 protein requires the basic region of the TATA-box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation. J Gen Virol 74, 2691–2698.[CrossRef]
    [Google Scholar]
  8. Gonczol, E., Andrews, P. W. & Plotkin, S. A. ( 1984; ). Cytomegalovirus replicates in differentiated but not in undifferentiated human embryonal carcinoma cells. Science 224, 159–161.[CrossRef]
    [Google Scholar]
  9. Hagemeier, C., Bannister, A. J., Cook, A. & Kouzarides, T. ( 1993; ). The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci U S A 90, 1580–1584.[CrossRef]
    [Google Scholar]
  10. Huang, T. H., Oka, T., Asai, T., Okada, T., Merrills, B. W., Gertson, P. N., Whitson, R. H. & Itakura, K. ( 1996; ). Repression by a differentiation-specific factor of the human cytomegalovirus enhancer. Nucleic Acids Res 24, 1695–1701.[CrossRef]
    [Google Scholar]
  11. Hunninghake, G. W., Monick, M. M., Liu, B. & Stinski, M. F. ( 1989; ). The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J Virol 63, 3026–3033.
    [Google Scholar]
  12. Ibanez, C. E., Schrier, R., Ghazal, P., Wiley, C. & Nelson, J. A. ( 1991; ). Human cytomegalovirus productively infects primary differentiated macrophages. J Virol 65, 6581–6588.
    [Google Scholar]
  13. Jenuwein, T. & Allis, C. D. ( 2001; ). Translating the histone code. Science 293, 1074–1080.[CrossRef]
    [Google Scholar]
  14. Kaelin, W. G., Jr, Krek, W., Sellers, W. R. & 9 other authors ( 1992; ). Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70, 351–364.[CrossRef]
    [Google Scholar]
  15. Kothari, S., Baillie, J., Sissons, J. G. & Sinclair, J. H. ( 1991; ). The 21 bp repeat element of the human cytomegalovirus major immediate early enhancer is a negative regulator of gene expression in undifferentiated cells. Nucleic Acids Res 19, 1767–1771.[CrossRef]
    [Google Scholar]
  16. Kouzarides, T. ( 1999; ). Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9, 40–48.[CrossRef]
    [Google Scholar]
  17. Kouzarides, T. ( 2002; ). Histone methylation in transcriptional control. Curr Opin Genet Dev 12, 198–209.[CrossRef]
    [Google Scholar]
  18. Kwiatkowski, D. J., Stossel, T. P., Orkin, S. H., Mole, J. E., Colten, H. R. & Yin, H. L. ( 1986; ). Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 323, 455–458.[CrossRef]
    [Google Scholar]
  19. Lai, A., Lee, J. M., Yang, W. M., DeCaprio, J. A., Kaelin, W. G., Jr, Seto, E. & Branton, P. E. ( 1999; ). RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins. Mol Cell Biol 19, 6632–6641.
    [Google Scholar]
  20. Lang, D., Fickenscher, H. & Stamminger, T. ( 1992; ). Analysis of proteins binding to the proximal promoter region of the human cytomegalovirus IE-1/2 enhancer/promoter reveals both consensus and aberrant recognition sequences for transcription factors Sp1 and CREB. Nucleic Acids Res 20, 3287–3295.[CrossRef]
    [Google Scholar]
  21. Lathey, J. L. & Spector, S. A. ( 1991; ). Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. J Virol 65, 6371–6375.
    [Google Scholar]
  22. Liu, R., Baillie, J., Sissons, J. G. & Sinclair, J. H. ( 1994; ). The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in non-permissive cells. Nucleic Acids Res 22, 2453–2459.[CrossRef]
    [Google Scholar]
  23. Lubon, H., Ghazal, P., Hennighausen, L., Reynolds-Kohler, C., Lockshin, C. & Nelson, J. ( 1989; ). Cell-specific activity of the modulator region in the human cytomegalovirus major immediate-early gene. Mol Cell Biol 9, 1342–1345.
    [Google Scholar]
  24. Lukac, D. M., Harel, N. Y., Tanese, N. & Alwine, J. C. ( 1997; ). TAF-like functions of human cytomegalovirus immediate-early proteins. J Virol 71, 7227–7239.
    [Google Scholar]
  25. Luo, R. X., Postigo, A. A. & Dean, D. C. ( 1998; ). Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473.[CrossRef]
    [Google Scholar]
  26. Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Le Villain, J. P., Troalen, F., Trouche, D. & Harel-Bellan, A. ( 1998; ). Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601–605.[CrossRef]
    [Google Scholar]
  27. Martinez-Balbas, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A. & Kouzarides, T. ( 2000; ). Regulation of E2F1 activity by acetylation. EMBO J 19, 662–671.[CrossRef]
    [Google Scholar]
  28. Meier, J. L. ( 2001; ). Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal NTera2 cells: role of trichostatin A, retinoic acid, and deletion of the 21-base-pair repeats and modulator. J Virol 75, 1581–1593.[CrossRef]
    [Google Scholar]
  29. Meier, J. L. & Stinski, M. F. ( 1996; ). Regulation of human cytomegalovirus immediate-early gene expression. Intervirology 39, 331–342.
    [Google Scholar]
  30. Meier, J. L. & Stinski, M. F. ( 1997; ). Effect of a modulator deletion on transcription of the human cytomegalovirus major immediate-early genes in infected undifferentiated and differentiated cells. J Virol 71, 1246–1255.
    [Google Scholar]
  31. Meier, J. L. & Pruessner, J. A. ( 2000; ). The human cytomegalovirus major immediate-early distal enhancer region is required for efficient viral replication and immediate-early gene expression. J Virol 74, 1602–1613.[CrossRef]
    [Google Scholar]
  32. Meier, J. L., Keller, M. J. & McCoy, J. J. ( 2002; ). Requirement of multiple cis-acting elements in the human cytomegalovirus major immediate-early distal enhancer for viral gene expression and replication. J Virol 76, 313–326.[CrossRef]
    [Google Scholar]
  33. Mendelson, M., Monard, S., Sissons, P. & Sinclair, J. ( 1996; ). Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol 77, 3099–3102.[CrossRef]
    [Google Scholar]
  34. Minton, E. J., Tysoe, C., Sinclair, J. H. & Sissons, J. G. ( 1994; ). Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. J Virol 68, 4017–4021.
    [Google Scholar]
  35. Murphy, J. C., Fischle, W., Verdin, E. & Sinclair, J. H. ( 2002; ). Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21, 1112–1120.[CrossRef]
    [Google Scholar]
  36. Pei, L. ( 2001; ). Transcriptional repressor of vasoactive intestinal peptide receptor mediates repression through interactions with TFIIB and TFIIEβ. Biochem J 360, 633–638.[CrossRef]
    [Google Scholar]
  37. Radkov, S. A., Touitou, R., Brehm, A., Rowe, M., West, M., Kouzarides, T. & Allday, M. J. ( 1999; ). Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol 73, 5688–5697.
    [Google Scholar]
  38. Sambucetti, L. C., Cherrington, J. M., Wilkinson, G. W. & Mocarski, E. S. ( 1989; ). NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J 8, 4251–4258.
    [Google Scholar]
  39. Sgouras, D. N., Athanasiou, M. A., Beal, G. J., Jr, Fisher, R. J., Blair, D. G. & Mavrothalassitis, G. J. ( 1995; ). ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ETS-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J 14, 4781–4793.
    [Google Scholar]
  40. Shelbourn, S. L., Kothari, S. K., Sissons, J. G. & Sinclair, J. H. ( 1989a; ). Repression of human cytomegalovirus gene expression associated with a novel immediate early regulatory region binding factor. Nucleic Acids Res 17, 9165–9171.[CrossRef]
    [Google Scholar]
  41. Shelbourn, S. L., Sissons, J. G. & Sinclair, J. H. ( 1989b; ). Expression of oncogenic ras in human teratocarcinoma cells induces partial differentiation and permissiveness for human cytomegalovirus infection. J Gen Virol 70, 367–374.[CrossRef]
    [Google Scholar]
  42. Sinclair, J. & Sissons, P. ( 1996; ). Latent and persistent infections of monocytes and macrophages. Intervirology 39, 293–301.
    [Google Scholar]
  43. Sinzger, C. & Jahn, G. ( 1996; ). Human cytomegalovirus cell tropism and pathogenesis. Intervirology 39, 302–319.
    [Google Scholar]
  44. Sinzger, C., Grefte, A., Plachter, B., Gouw, A. S., The, T. H. & Jahn, G. ( 1995; ). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76, 741–750.[CrossRef]
    [Google Scholar]
  45. Sinzger, C., Bissinger, A. L., Viebahn, R., Oettle, H., Radke, C., Schmidt, C. A. & Jahn, G. ( 1999; ). Hepatocytes are permissive for human cytomegalovirus infection in human liver cell culture and in vivo. J Infect Dis 180, 976–986.[CrossRef]
    [Google Scholar]
  46. Soderberg-Naucler, C., Fish, K. N. & Nelson, J. A. ( 1997; ). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91, 119–126.[CrossRef]
    [Google Scholar]
  47. Strahl, B. D. & Allis, C. D. ( 2000; ). The language of covalent histone modifications. Nature 403, 41–45.[CrossRef]
    [Google Scholar]
  48. Taunton, J., Hassig, C. A. & Schreiber, S. L. ( 1996; ). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411.[CrossRef]
    [Google Scholar]
  49. Taylor-Wiedeman, J., Sissons, J. G., Borysiewicz, L. K. & Sinclair, J. H. ( 1991; ). Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72, 2059–2064.[CrossRef]
    [Google Scholar]
  50. Taylor-Wiedeman, J., Sissons, P. & Sinclair, J. ( 1994; ). Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol 68, 1597–1604.
    [Google Scholar]
  51. Usheva, A. & Shenk, T. ( 1994; ). TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA. Cell 76, 1115–1121.[CrossRef]
    [Google Scholar]
  52. Usheva, A. & Shenk, T. ( 1996; ). YY1 transcriptional initiator: protein interactions and association with a DNA site containing unpaired strands. Proc Natl Acad Sci U S A 93, 13571–13576.[CrossRef]
    [Google Scholar]
  53. Vassallo, M. F. & Tanese, N. ( 2002; ). Isoform-specific interaction of HP1 with human TAFII130. Proc Natl Acad Sci U S A 99, 5919–5924.[CrossRef]
    [Google Scholar]
  54. Weinshenker, B. G., Wilton, S. & Rice, G. P. ( 1988; ). Phorbol ester-induced differentiation permits productive human cytomegalovirus infection in a monocytic cell line. J Immunol 140, 1625–1631.
    [Google Scholar]
  55. Wong, C. W. & Privalsky, M. L. ( 1998; ). Transcriptional repression by the SMRT-mSin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol Cell Biol 18, 5500–5510.
    [Google Scholar]
  56. Wotton, D., Lo, R. S., Lee, S. & Massague, J. ( 1999; ). A Smad transcriptional corepressor. Cell 97, 29–39.[CrossRef]
    [Google Scholar]
  57. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J. & Wang, W. ( 1998; ). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2, 851–861.[CrossRef]
    [Google Scholar]
  58. Yang, W. M., Inouye, C., Zeng, Y., Bearss, D. & Seto, E. ( 1996; ). Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci U S A 93, 12845–12850.[CrossRef]
    [Google Scholar]
  59. Yang, W. M., Yao, Y. L., Sun, J. M., Davie, J. R. & Seto, E. ( 1997; ). Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272, 28001–28007.[CrossRef]
    [Google Scholar]
  60. Yang, S. H., Vickers, E., Brehm, A., Kouzarides, T. & Sharrocks, A. D. ( 2001; ). Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol Cell Biol 21, 2802–2814.[CrossRef]
    [Google Scholar]
  61. Yao, Y. L., Yang, W. M. & Seto, E. ( 2001; ). Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 21, 5979–5991.[CrossRef]
    [Google Scholar]
  62. Zhang, X. Y., Ni, Y. S., Saifudeen, Z., Asiedu, C. K., Supakar, P. C. & Ehrlich, M. ( 1995; ). Increasing binding of a transcription factor immediately downstream of the cap site of a cytomegalovirus gene represses expression. Nucleic Acids Res 23, 3026–3033.[CrossRef]
    [Google Scholar]
  63. Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S. & Reinberg, D. ( 1998; ). The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289.[CrossRef]
    [Google Scholar]
  64. Zweidler-Mckay, P. A., Grimes, H. L., Flubacher, M. M. & Tsichlis, P. N. ( 1996; ). Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol Cell Biol 16, 4024–4034.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80352-0
Loading
/content/journal/jgv/10.1099/vir.0.80352-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error