1887

Abstract

Interferon (IFN)- and - are the main cytokines for innate immune responses against viral infections. To replicate efficiently in the hosts, viruses have evolved various countermeasures to the IFN response. The V protein of measles virus (MV) has been shown to block IFN-/ signalling. Here, the wild-type IC-B strain of MV was shown to grow comparably in the presence and absence of IFN-, whereas replication of the Edmonston tag strain recovered from cloned DNA was strongly suppressed in its presence. The V protein of the IC-B strain, but not the Edmonston tag strain, blocked IFN- signalling. The V protein of the Edmonston strain from the ATCC also inhibited IFN- signalling. There were three amino acid differences between the V proteins of the Edmonston ATCC and tag strains, and substitutions of both residues at positions 110 and 272 were required for the Edmonston ATCC V protein to lose IFN-antagonist activity. The P protein of the IC-B strain, which shares the N-terminal 231 aa residues with the V protein, also inhibited IFN- signalling. Indeed, fragments comprising only those 231 residues of the IC-B and Edmonston ATCC V proteins, but not the Edmonston tag V protein, were able to block IFN- signalling. However, the N-terminal region of the Edmonston tag V protein, when attached to the C-terminal region of the Edmonston ATCC V protein, inhibited IFN- signalling. Taken together, our results indicate that both the N- and C-terminal regions contribute to the IFN-antagonist activity of the MV V protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80308-0
2004-10-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir852991.html?itemId=/content/journal/jgv/10.1099/vir.0.80308-0&mimeType=html&fmt=ahah

References

  1. Andrejeva, J., Poole, E., Young, D. F., Goodbourn, S. & Randall, R. E. ( 2002a; ). The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J Virol 76, 11379–11386.[CrossRef]
    [Google Scholar]
  2. Andrejeva, J., Young, D. F., Goodbourn, S. & Randall, R. E. ( 2002b; ). Degradation of STAT1 and STAT2 by the V proteins of simian virus 5 and human parainfluenza virus type 2, respectively: consequences for virus replication in the presence of alpha/beta and gamma interferons. J Virol 76, 2159–2167.[CrossRef]
    [Google Scholar]
  3. Aversa, G., Chang, C.-C., Carballido, J. M., Cocks, B. G. & de Vries, J. E. ( 1997; ). Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent, cyclosporin A-sensitive T cell proliferation and IFN-gamma production. J Immunol 158, 4036–4044.
    [Google Scholar]
  4. Chatziandreou, N., Young, D., Andrejeva, J., Goodbourn, S. & Randall, R. E. ( 2002; ). Differences in interferon sensitivity and biological properties of two related isolates of simian virus 5: a model for virus persistence. Virology 293, 234–242.[CrossRef]
    [Google Scholar]
  5. Combredet, C., Labrousse, V., Mollet, L. & 7 other authors ( 2003; ). A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 77, 11546–11554.[CrossRef]
    [Google Scholar]
  6. Didcock, L., Young, D. F., Goodbourn, S. & Randall, R. E. ( 1999; ). The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73, 9928–9933.
    [Google Scholar]
  7. Emeny, J. M. & Morgan, M. J. ( 1979; ). Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol 43, 247–252.[CrossRef]
    [Google Scholar]
  8. Enders, J. F. & Peebles, T. C. ( 1954; ). Propagation in tissue cultures of cytopathic agents from patients with measles. Proc Soc Exp Biol Med 86, 277–286.[CrossRef]
    [Google Scholar]
  9. Erlenhoefer, C., Wurzer, W. J., Loffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75, 4499–4505.[CrossRef]
    [Google Scholar]
  10. Escoffier, C., Manie, S., Vincent, S., Muller, C. P., Billeter, M. & Gerlier, D. ( 1999; ). Nonstructural C protein is required for efficient measles virus replication in human peripheral blood cells. J Virol 73, 1695–1698.
    [Google Scholar]
  11. Garcia-Sastre, A. ( 2001; ). Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279, 375–384.[CrossRef]
    [Google Scholar]
  12. Garcin, D., Marq, J. B., Strahle, L., le Mercier, P. & Kolakofsky, D. ( 2002; ). All four Sendai virus C proteins bind Stat1, but only the larger forms also induce its mono-ubiquitination and degradation. Virology 295, 256–265.[CrossRef]
    [Google Scholar]
  13. Goodbourn, S., Didcock, L. & Randall, R. E. ( 2000; ). Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81, 2341–2364.
    [Google Scholar]
  14. Gotoh, B., Komatsu, T., Takeuchi, K. & Yokoo, J. ( 2002; ). Paramyxovirus strategies for evading the interferon response. Rev Med Virol 12, 337–357.[CrossRef]
    [Google Scholar]
  15. Griffin, D. ( 2001; ). Measles virus. In Fields Virology, 4th edn, pp. 1401–1441. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott, Williams & Wilkins.
  16. He, B., Paterson, R. G., Stock, N., Durbin, J. E., Durbin, R. K., Goodbourn, S., Randall, R. E. & Lamb, R. A. ( 2002; ). Recovery of paramyxovirus simian virus 5 with a V protein lacking the conserved cysteine-rich domain: the multifunctional V protein blocks both interferon-β induction and interferon signaling. Virology 303, 15–32.[CrossRef]
    [Google Scholar]
  17. Horton, R. M., Cai, Z. L., Ho, S. N. & Pease, L. R. ( 1990; ). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528–535.
    [Google Scholar]
  18. Hsu, E., Iorio, C., Sarangi, F., Khine, A. & Richardson, C. ( 2001; ). CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9–21.[CrossRef]
    [Google Scholar]
  19. Kato, A., Ohnishi, Y., Kohase, M., Saito, S., Tashiro, M. & Nagai, Y. ( 2001; ). Y2, the smallest of the Sendai virus C proteins, is fully capable of both counteracting the antiviral action of interferons and inhibiting viral RNA synthesis. J Virol 75, 3802–3810.[CrossRef]
    [Google Scholar]
  20. Katze, M. G., He, Y. & Gale, M. J. ( 2002; ). Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2, 675–687.[CrossRef]
    [Google Scholar]
  21. Kobune, F., Sakata, H. & Sugiura, A. ( 1990; ). Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol 64, 700–705.
    [Google Scholar]
  22. Kobune, F., Takahashi, H., Terao, K. & 7 other authors ( 1996; ). Nonhuman primate models of measles. Lab Anim Sci 46, 315–320.
    [Google Scholar]
  23. Kubota, T., Yokosawa, N., Yokota, S. & Fujii, N. ( 2001; ). C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon α and γ signal transduction pathway through decrease of STAT 1-α. Biochem Biophys Res Commun 283, 255–259.[CrossRef]
    [Google Scholar]
  24. Manchester, M., Eto, D. S., Valsamakis, A., Liton, P. B., Fernandez-Munoz, R., Rota, P. A., Bellini, W. J., Forthal, D. N. & Oldstone, M. B. A. ( 2000; ). Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74, 3967–3974.[CrossRef]
    [Google Scholar]
  25. Naniche, D., Yeh, A., Eto, D., Manchester, M., Friedman, R. M. & Oldstone, M. B. ( 2000; ). Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of alpha/beta interferon production. J Virol 74, 7478–7484.[CrossRef]
    [Google Scholar]
  26. Nishio, M., Tsurudome, M., Ito, M., Kawano, M., Komada, H. & Ito, Y. ( 2001; ). High resistance of human parainfluenza type 2 virus protein-expressing cells to the antiviral and anti-cell proliferative activities of alpha/beta interferons: cysteine-rich V-specific domain is required for high resistance to the interferons. J Virol 75, 9165–9176.[CrossRef]
    [Google Scholar]
  27. Nishio, M., Garcin, D., Simonet, V. & Kolakofsky, D. ( 2002; ). The carboxyl segment of the mumps virus V protein associates with Stat proteins in vitro via a tryptophan-rich motif. Virology 300, 92–99.[CrossRef]
    [Google Scholar]
  28. Niwa, H., Yamamura, K. & Miyazaki, J. ( 1991; ). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.[CrossRef]
    [Google Scholar]
  29. Ono, N., Tatsuo, H., Hidaka, Y., Aoki, T., Minagawa, H. & Yanagi, Y. ( 2001; ). Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75, 4399–4401.[CrossRef]
    [Google Scholar]
  30. Palosaari, H., Parisien, J. P., Rodriguez, J. J., Ulane, C. M. & Horvath, C. M. ( 2003; ). STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77, 7635–7644.[CrossRef]
    [Google Scholar]
  31. Parisien, J. P., Lau, J. F., Rodriguez, J. J., Sullivan, B. M., Moscona, A., Parks, G. D., Lamb, R. A. & Horvath, C. M. ( 2001; ). The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 283, 230–239.[CrossRef]
    [Google Scholar]
  32. Park, M. S., Shaw, M. L., Munoz-Jordan, J., Cros, J. F., Nakaya, T., Bouvier, N., Palese, P., Garcia-Sastre, A. & Basler, C. F. ( 2003; ). Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 77, 1501–1511.[CrossRef]
    [Google Scholar]
  33. Parks, C. L., Lerch, R. A., Walpita, P., Wang, H. P., Sidhu, M. S. & Udem, S. A. ( 2001; ). Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 75, 910–920.[CrossRef]
    [Google Scholar]
  34. Patterson, J. B., Thomas, D., Lewicki, H., Billeter, M. A. & Oldstone, M. B. ( 2000; ). V and C proteins of measles virus function as virulence factors in vivo. Virology 267, 80–89.[CrossRef]
    [Google Scholar]
  35. Poole, E., He, B., Lamb, R. A., Randall, R. E. & Goodbourn, S. ( 2002; ). The V proteins of simian virus 5 and other paramyxoviruses inhibit induction of interferon-β. Virology 303, 33–46.[CrossRef]
    [Google Scholar]
  36. Radecke, F., Spielhofer, P., Schneider, H., Kaelin, K., Huber, M., Dotsch, C., Christiansen, G. & Billeter, M. A. ( 1995; ). Rescue of measles viruses from cloned DNA. EMBO J 14, 5773–5784.
    [Google Scholar]
  37. Rodriguez, J. J., Parisien, J. P. & Horvath, C. M. ( 2002; ). Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. J Virol 76, 11476–11483.[CrossRef]
    [Google Scholar]
  38. Rodriguez, J. J., Wang, L. F. & Horvath, C. M. ( 2003; ). Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation. J Virol 77, 11842–11845.[CrossRef]
    [Google Scholar]
  39. Saito, S., Ogino, T., Miyajima, N., Kato, A. & Kohase, M. ( 2002; ). Dephosphorylation failure of tyrosine-phosphorylated STAT1 in IFN-stimulated Sendai virus C protein-expressing cells. Virology 293, 205–209.[CrossRef]
    [Google Scholar]
  40. Schneider, H., Kaelin, K. & Billeter, M. A. ( 1997; ). Recombinant measles viruses defective for RNA editing and V protein synthesis are viable in cultured cells. Virology 227, 314–322.[CrossRef]
    [Google Scholar]
  41. Schneider, U., von Messling, V., Devaux, P. & Cattaneo, R. ( 2002; ). Efficiency of measles virus entry and dissemination through different receptors. J Virol 76, 7460–7467.[CrossRef]
    [Google Scholar]
  42. Shaffer, J. A., Bellini, W. J. & Rota, P. A. ( 2003; ). The C protein of measles virus inhibits the type I interferon response. Virology 315, 389–397.[CrossRef]
    [Google Scholar]
  43. Takeda, M., Kato, A., Kobune, F., Sakata, H., Li, Y., Shioda, T., Sakai, Y., Asakawa, M. & Nagai, Y. ( 1998; ). Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. J Virol 72, 8690–8696.
    [Google Scholar]
  44. Takeda, M., Takeuchi, K., Miyajima, N., Kobune, F., Ami, Y., Nagata, N., Suzaki, Y., Nagai, Y. & Tashiro, M. ( 2000; ). Recovery of pathogenic measles virus from cloned cDNA. J Virol 74, 6643–6647.[CrossRef]
    [Google Scholar]
  45. Takeuchi, K., Miyajima, N., Kobune, F. & Tashiro, M. ( 2000; ). Comparative nucleotide sequence analyses of the entire genomes of B95a cell-isolated and Vero cell-isolated measles viruses from the same patient. Virus Genes 20, 253–257.[CrossRef]
    [Google Scholar]
  46. Takeuchi, K., Kadota, S. I., Takeda, M., Miyajima, N. & Nagata, K. ( 2003; ). Measles virus V protein blocks interferon (IFN)-α/β but not IFN-γ signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545, 177–182.[CrossRef]
    [Google Scholar]
  47. Tatsuo, H., Okuma, K., Tanaka, K., Ono, N., Minagawa, H., Takade, A., Matsuura, Y. & Yanagi, Y. ( 2000a; ). Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74, 4139–4145.[CrossRef]
    [Google Scholar]
  48. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000b; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  49. Tober, C., Seufert, M., Schneider, H., Billeter, M. A., Johnston, I. C., Niewiesk, S., ter Meulen, V. & Schneider-Schaulies, S. ( 1998; ). Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72, 8124–8132.
    [Google Scholar]
  50. Valsamakis, A., Schneider, H., Auwaerter, P. G., Kaneshima, H., Billeter, M. A. & Griffin, D. E. ( 1998; ). Recombinant measles viruses with mutations in the C, V, or F gene have altered growth phenotypes in vivo. J Virol 72, 7754–7761.
    [Google Scholar]
  51. Wang, I. M., Blanco, J. C., Tsai, S. Y., Tsai, M. J. & Ozato, K. ( 1996; ). Interferon regulatory factors and TFIIB cooperatively regulate interferon-responsive promoter activity in vivo and in vitro. Mol Cell Biol 16, 6313–6324.
    [Google Scholar]
  52. Wansley, E. K. & Parks, G. D. ( 2002; ). Naturally occurring substitutions in the P/V gene convert the noncytopathic paramyxovirus simian virus 5 into a virus that induces alpha/beta interferon synthesis and cell death. J Virol 76, 10109–10121.[CrossRef]
    [Google Scholar]
  53. Yanagi, Y., Cubitt, B. A. & Oldstone, M. B. A. ( 1992; ). Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 187, 280–289.[CrossRef]
    [Google Scholar]
  54. Yanagi, Y., Ono, N., Tatsuo, H., Hashimoto, K. & Minagawa, H. ( 2002; ). Measles virus receptor SLAM (CD150). Virology 299, 155–161.[CrossRef]
    [Google Scholar]
  55. Yokota, S., Saito, H., Kubota, T., Yokosawa, N., Amano, K. & Fujii, N. ( 2003; ). Measles virus suppresses interferon-α signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-α receptor complex. Virology 306, 135–146.[CrossRef]
    [Google Scholar]
  56. Young, D. F., Chatziandreou, N., He, B., Goodbourn, S., Lamb, R. A. & Randall, R. E. ( 2001; ). Single amino acid substitution in the V protein of simian virus 5 differentiates its ability to block interferon signaling in human and murine cells. J Virol 75, 3363–3370.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80308-0
Loading
/content/journal/jgv/10.1099/vir.0.80308-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error