1887

Abstract

Polydnaviruses are endogenous particles that are crucial for the survival of endoparasitoid wasps, providing active suppression of the immune function of the lepidopteran host in which wasp larvae develop. The bracovirus (CrBV) is unique in that only four gene products are detected in larval host () tissues and expression of CrBV genes is transient, occurring between 4 and 12 h post-parasitization. Two of the four genes, and have been characterized. CrV1 is a secreted glycoprotein that has been implicated in depolymerization of the actin cytoskeleton of host haemocytes, leading to haemocyte inactivation; CrV3 is a multimeric C-type lectin that shares homology with insect immune lectins. Here, a third CrBV-specific gene is described, , which is expressed in larval tissues. , which is transcribed in haemocytes and fat body cells, has an ORF of 963 bp that produces a glycoprotein of approximately 40 kDa. CrV2 is secreted into haemolymph and appears to be internalized by host haemocytes. CrV2 has a coiled-coil region predicted at its C-terminus, which may be involved in the formation of putative CrV2 trimers that are detected in haemolymph of parasitized host larvae.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80307-0
2004-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir852873.html?itemId=/content/journal/jgv/10.1099/vir.0.80307-0&mimeType=html&fmt=ahah

References

  1. Alber T. 1992; Structure of the leucine zipper. Curr Opin Genet Dev 2:205–210 [CrossRef]
    [Google Scholar]
  2. Arai T., Kawasaki K., Kubo T., Natori S. 1998; Cloning of cDNA for regenectin, a humoral C-type lectin of Periplaneta americana , and expression of the regenectin gene during leg regeneration. Insect Biochem Mol Biol 28:987–994 [CrossRef]
    [Google Scholar]
  3. Asgari S. 1997; Cotesia rubecula polydnavirus-specific gene expression in the host Pieris rapae . PhD thesis University of Adelaide; Australia:
  4. Asgari S., Hellers M., Schmidt O. 1996; Host haemocyte inactivation by an insect parasitoid: transient expression of a polydnavirus gene. J Gen Virol 77:2653–2662 [CrossRef]
    [Google Scholar]
  5. Asgari S., Schmidt O., Theopold U. 1997; A polydnavirus-encoded protein of an endoparasitoid wasp is an immune suppressor. J Gen Virol 78:3061–3070
    [Google Scholar]
  6. Beckage N. E. 1998; Parasitoids and polydnaviruses. Bioscience 48:305–311 [CrossRef]
    [Google Scholar]
  7. Beckage N. E., Gelman D. B. 2004; Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu Rev Entomol 49:299–330 [CrossRef]
    [Google Scholar]
  8. Beckage N. E., Kanost M. R. 1993; Effects of parasitism by the braconid wasp Cotesia congregata on host hemolymph proteins of the tobacco hornworm, Manduca sexta . Insect Biochem Mol Biol 23:643–653 [CrossRef]
    [Google Scholar]
  9. Beckage N. E., Tan F. F., Schleifer K. W., Lane R. D., Cherubin L. L. 1994; Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta . Arch Insect Biochem Physiol 26:165–195 [CrossRef]
    [Google Scholar]
  10. Cavener D. R., Ray S. C. 1991; Eukaryotic start and stop translation sites. Nucleic Acids Res 19:3185–3192 [CrossRef]
    [Google Scholar]
  11. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159
    [Google Scholar]
  12. Dib-Hajj S. D., Webb B. A., Summers M. D. 1993; Structure and evolutionary implications of a “cysteine-rich” Campoletis sonorensis polydnavirus gene family. Proc Natl Acad Sci U S A 90:3765–3769 [CrossRef]
    [Google Scholar]
  13. Glatz R., Schmidt O., Asgari S. 2003; Characterization of a novel protein with homology to C-type lectins expressed by the Cotesia rubecula bracovirus in larvae of the lepidopteran host, Pieris rapae . J Biol Chem 278:19743–19750 [CrossRef]
    [Google Scholar]
  14. Haq S., Kubo T., Kurata S., Kobayashi A., Natori S. 1996; Purification, characterization, and cDNA cloning of a galactose-specific lectin from Drosophila melanogaster . J Biol Chem 271:20213–20218 [CrossRef]
    [Google Scholar]
  15. Harwood S. H., Beckage N. E. 1994; Purification and characterization of an early-expressed polydnavirus-induced protein from the hemolymph of Manduca sexta larvae parasitized by Cotesia congregata . Insect Biochem Mol Biol 24:685–698 [CrossRef]
    [Google Scholar]
  16. Kakiuchi M., Okino N., Sueyoshi N., Ichinose S., Omori A., Kawabata S., Yamaguchi K., Ito M. 2002; Purification, characterization, and cDNA cloning of α - N -acetylgalactosamine-specific lectin from starfish, Asterina pectinifera . Glycobiology 12:85–94 [CrossRef]
    [Google Scholar]
  17. Kilpatrick D. C. 2002; Animal lectins: a historical introduction and overview. Biochim Biophys Acta 1572:187–197 [CrossRef]
    [Google Scholar]
  18. Kroemer J. A., Webb B. A. 2004; Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annu Rev Entomol 49:431–456 [CrossRef]
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  20. Le N. T., Asgari S., Amaya K., Tan F. F., Beckage N. E. 2003; Persistence and expression of Cotesia congregata polydnavirus in host larvae of the tobacco hornworm, Manduca sexta . J Insect Physiol 49:533–543 [CrossRef]
    [Google Scholar]
  21. Rosales C., Jones S. L., McCourt D., Brown E. J. 1994; Bromophenacyl bromide binding to the actin-bundling protein l-plastin inhibits inositol trisphosphate-independent increase in Ca2+ in human neutrophils. Proc Natl Acad Sci U S A 91:3534–3538 [CrossRef]
    [Google Scholar]
  22. Saito T., Hatada M., Iwanaga S., Kawabata S. 1997; A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. J Biol Chem 272:30703–30708 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Stoltz D. B., Vinson S. B. 1979; Viruses and parasitism in insects. Adv Virus Res 24:125–171
    [Google Scholar]
  25. Stoltz D. B., Whitfield J. B. 1992; Viruses and virus-like entities in the parasitic Hymenoptera. J Hymenopt Res 1:125–139
    [Google Scholar]
  26. Stoltz D. B., Guzo D., Cook D. 1986; Studies on polydnavirus transmission. Virology 155:120–131 [CrossRef]
    [Google Scholar]
  27. Strand M. R., Pech L. L. 1995; Microplitis demolitor polydnavirus induces apoptosis of a specific haemocyte morphotype in Pseudoplusia includens . J Gen Virol 76:283–291 [CrossRef]
    [Google Scholar]
  28. Strand M. R., McKenzie D. I., Grassl V., Dover B. A., Aiken J. M. 1992; Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens . J Gen Virol 73:1627–1635 [CrossRef]
    [Google Scholar]
  29. Strand M. R., Witherell R. A., Trudeau D. 1997; Two Microplitis demolitor polydnavirus mRNAs expressed in hemocytes of Pseudoplusia includens contain a common cysteine-rich domain. J Virol 71:2146–2156
    [Google Scholar]
  30. Teramoto T., Tanaka T. 2003; Similar polydnavirus genes of two parasitoids, Cotesia kariyai and Cotesia ruficrus , of the host Pseudaletia separata . J Insect Physiol 49:463–471 [CrossRef]
    [Google Scholar]
  31. Theilmann D. A., Summers M. D. 1988; Identification and comparison of Campoletis sonorensis virus transcripts expressed from four genomic segments in the insect hosts Campoletis sonorensis and Heliothis virescens . Virology 167:329–341
    [Google Scholar]
  32. Trudeau D., Witherell R. A., Strand M. R. 2000; Characterization of two novel Microplitis demolitor polydnavirus mRNAs expressed in Pseudoplusia includens haemocytes. J Gen Virol 81:3049–3058
    [Google Scholar]
  33. Turnbull M., Webb B. 2002; Perspectives on polydnavirus origins and evolution. Adv Virus Res 58:203–254
    [Google Scholar]
  34. Webb B. A. 1998; Polydnavirus biology, genome structure, and evolution. In The Insect Viruses pp  105–139 Edited by Miller L. K., Ball L. A. New York: Plenum;
    [Google Scholar]
  35. Whitfield J. B. 2000; Phylogeny of microgastroid braconid wasps, and what it tells us about polydnavirus evolution. In Hymenoptera: Evolution, Biodiversity and Biological Control pp  97–105 Edited by Austin A. D., Dowton M. Melbourne, Australia: CSIRO;
    [Google Scholar]
  36. Whitfield J. B., Asgari S. 2003; Virus or not? Phylogenetics of polydnaviruses and their wasp carriers. J Insect Physiol 49:397–405 [CrossRef]
    [Google Scholar]
  37. Yano Y., Kambayashi J., Shiba E., Sakon M., Oiki E., Fukuda K., Kawasaki T., Mori T. 1994; The role of protein phosphorylation and cytoskeletal reorganization in microparticle formation from the platelet plasma membrane. Biochem J 299:303–308
    [Google Scholar]
  38. Yu X.-Q., Kanost M. R. 2003; Manduca sexta lipopolysaccharide-specific immulectin-2 protects larvae from bacterial infection. Dev Comp Immunol 27:189–196 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80307-0
Loading
/content/journal/jgv/10.1099/vir.0.80307-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error