1887

Abstract

Human cytomegalovirus (HCMV) is a frequent cause of major disease following primary infection or reactivation from latency in immunocompromised patients. It has also been suggested that there may be a link between HCMV and vascular disease. Both smooth muscle and endothelial cells are targets for primary infection with HCMV and have also been postulated as potential sites of HCMV latency. One of the most intensely studied sites of HCMV latency is the cells of the myeloid lineage; there is increasing evidence that the myeloid and endothelial lineages arise from a common precursor in the bone marrow, suggesting that endothelial cells could be another route of HCMV dissemination. However, using a highly sensitive PCR capable of detecting endogenous HCMV in myeloid cells, the HCMV genome in endothelial and smooth muscle cells isolated from the saphenous veins of seropositive patients was not detected. These data suggest that vascular endothelial and smooth muscle cells are unlikely to be important sites of HCMV latency .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80285-0
2004-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853337.html?itemId=/content/journal/jgv/10.1099/vir.0.80285-0&mimeType=html&fmt=ahah

References

  1. Danesh J., Collins R., Peto R. 1997; Chronic infections and coronary heart disease: is there a link?. Lancet 350:430–436 [CrossRef]
    [Google Scholar]
  2. Drake C. J., Fleming P. A. 2000; Vasculogenesis in the day 6·5 to 9·5 mouse embryo. Blood 95:1671–1679
    [Google Scholar]
  3. Drew W. L. 1988; Cytomegalovirus infection in patients with AIDS. J Infect Dis 158:449–456 [CrossRef]
    [Google Scholar]
  4. Emery V. C. 2001; Cytomegalovirus and the aging population. Drugs Aging 18:927–933 [CrossRef]
    [Google Scholar]
  5. Fabricant C. G., Fabricant J., Litrenta M. M., Minick C. R. 1978; Virus-induced atherosclerosis. J Exp Med 148:335–340 [CrossRef]
    [Google Scholar]
  6. Fish K. N., Soderberg-Naucler C., Mills L. K., Stenglein S., Nelson J. A. 1998; Human cytomegalovirus persistently infects aortic endothelial cells. J Virol 72:5661–5668
    [Google Scholar]
  7. Goodell M. A., Brose K., Paradis G., Conner A. S., Mulligan R. C. 1996; Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806 [CrossRef]
    [Google Scholar]
  8. Grefte A., van der Giessen M., van Son W., The T. H. 1993; Circulating cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection. J Infect Dis 167:270–277 [CrossRef]
    [Google Scholar]
  9. Hendrix M. G., Daemen M., Bruggeman C. A. 1991; Cytomegalovirus nucleic acid distribution within the human vascular tree. Am J Pathol 138:563–567
    [Google Scholar]
  10. Ho M. 1990; Epidemiology of cytomegalovirus infections. Rev Infect Dis 12 Suppl 7:S701–710
    [Google Scholar]
  11. Jarvis M. A., Nelson J. A. 2002; Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr Opin Microbiol 5:403–407 [CrossRef]
    [Google Scholar]
  12. Kahl M., Siegel-Axel D., Stenglein S., Jahn G., Sinzger C. 2000; Efficient lytic infection of human arterial endothelial cells by human cytomegalovirus strains. J Virol 74:7628–7635 [CrossRef]
    [Google Scholar]
  13. Lemstrom K. B., Bruning J. H., Bruggeman C. A., Lautenschlager I. T., Hayry P. J. 1993; Cytomegalovirus infection enhances smooth muscle cell proliferation and intimal thickening of rat aortic allografts. J Clin Invest 92:549–558 [CrossRef]
    [Google Scholar]
  14. Melnick J. L., Adam E., Debakey M. E. 1993; Cytomegalovirus and atherosclerosis. Eur Heart J 14 Suppl K:30–38
    [Google Scholar]
  15. Melnick J. L., Hu C., Burek J., Adam E., DeBakey M. E. 1994; Cytomegalovirus DNA in arterial walls of patients with atherosclerosis. J Med Virol 42:170–174 [CrossRef]
    [Google Scholar]
  16. Mendelson M., Monard S., Sissons P., Sinclair J. 1996; Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol 77:3099–3102 [CrossRef]
    [Google Scholar]
  17. Myerson D., Hackman R. C., Nelson J. A., Ward D. C., McDougall J. K. 1984; Widespread presence of histologically occult cytomegalovirus. Hum Pathol 15:430–439 [CrossRef]
    [Google Scholar]
  18. Reinke P., Prosch S., Kern F., Volk H. D. 1999; Mechanisms of human cytomegalovirus (HCMV) (re)activation and its impact on organ transplant patients. Transpl Infect Dis 1:157–164 [CrossRef]
    [Google Scholar]
  19. Rubin R. H. 1990; Impact of cytomegalovirus infection on organ transplant recipients. Rev Infect Dis 12:S754–766 [CrossRef]
    [Google Scholar]
  20. Sata M., Saiura A., Kunisato A. 7 other authors 2002; Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409 [CrossRef]
    [Google Scholar]
  21. Shimizu K., Sugiyama S., Aikawa M., Fukumoto Y., Rabkin E., Libby P., Mitchell R. N. 2001; Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nat Med 7:738–741 [CrossRef]
    [Google Scholar]
  22. Sinzger C., Grefte A., Plachter B., Gouw A. S., The T. H., Jahn G. 1995; Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76:741–750 [CrossRef]
    [Google Scholar]
  23. Sinzger C., Kahl M., Laib K., Klingel K., Rieger P., Plachter B., Jahn G. 2000; Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J Gen Virol 81:3021–3035
    [Google Scholar]
  24. Soderberg-Naucler C., Fish K. N., Nelson J. A. 1997; Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91:119–126 [CrossRef]
    [Google Scholar]
  25. Soderberg-Naucler C., Streblow D. N., Fish K. N., Allan-Yorke J., Smith P. P., Nelson J. A. 2001; Reactivation of latent human cytomegalovirus in CD14+ monocytes is differentiation dependent. J Virol 75:7543–7554 [CrossRef]
    [Google Scholar]
  26. Taylor-Wiedeman J., Sissons J. G., Borysiewicz L. K., Sinclair J. H. 1991; Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72:2059–2064 [CrossRef]
    [Google Scholar]
  27. Toorkey C. B., Carrigan D. R. 1989; Immunohistochemical detection of an immediate early antigen of human cytomegalovirus in normal tissues. J Infect Dis 160:741–751 [CrossRef]
    [Google Scholar]
  28. Yamashita J., Itoh H., Hirashima M., Ogawa M., Nishikawa S., Yurugi T., Naito M., Nakao K., Nishikawa S.-I. 2000; Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96 [CrossRef]
    [Google Scholar]
  29. Zhou Y. F., Leon M. B., Waclawiw M. A., Popma J. J., Yu Z. X., Finkel T., Epstein S. E. 1996; Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 335:624–630 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80285-0
Loading
/content/journal/jgv/10.1099/vir.0.80285-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error