1887

Abstract

(TMV) contains a sixth open reading frame (ORF6) that potentially encodes a 4·8 kDa protein. Elimination of ORF6 from TMV attenuated host responses in without alteration in virus accumulation. Furthermore, heterologous expression of TMV ORF6 from either potato virus X (PVX) or tobacco rattle virus (TRV) vectors enhanced the virulence of both viruses in , also without effects on their accumulation. By contrast, the presence or absence of TMV ORF6 had no effect on host response or virus accumulation in plants infected with TMV or PVX. TMV ORF6 also had no effect on the synergism between TMV and PVX in . However, the presence of the TMV ORF6 did have an effect on the pathogenicity of a TRV vector in . In three different types of assay carried out in plants, expression of TMV ORF6 failed to suppress gene silencing. Expression in epidermal cells of the encoded 4·8 kDa protein fused to the green fluorescent protein at either end showed, in addition to widespread cytosolic fluorescence, plasmodesmatal targeting specific to both fusion constructs. The role of the ORF6 in host responses is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80270-0
2004-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir853123.html?itemId=/content/journal/jgv/10.1099/vir.0.80270-0&mimeType=html&fmt=ahah

References

  1. Anandalakshmi R., Pruss G. J., Ge X., Marathe R., Mallory A. C., Smith T. H., Vance V. B. 1998; A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A 95:13079–13084 [CrossRef]
    [Google Scholar]
  2. Baulcombe D. C., Chapman S., Santa Cruz S. 1995; Jellyfish green fluorescent protein as a reporter for virus infection. Plant J 7:1045–1053 [CrossRef]
    [Google Scholar]
  3. Beachy R. N., Zaitlin M. 1977; Characterization and in vitro translation of the RNAs from less-than-full-length, virus-related, nucleoprotein rods present in tobacco mosaic virus preparations. Virology 81:160–169 [CrossRef]
    [Google Scholar]
  4. Boevink P., Santa Cruz S., Hawes C., Harris N., Oparka K. J. 1996; Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plants cells. Plant J 10:935–941 [CrossRef]
    [Google Scholar]
  5. Brigneti G., Voinnet O., Li W.-X., Ji L.-H., Ding S.-W., Baulcombe D. C. 1998; Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana . EMBO J 17:6739–6746 [CrossRef]
    [Google Scholar]
  6. Burgyán J., Hornyik C., Szittya G., Silhavy D., Bisztray G. 2000; The ORF1 products of tombusviruses play a crucial role in lethal necrosis in virus-infected plants. J Virol 74:10873–10881 [CrossRef]
    [Google Scholar]
  7. Campbell R. E., Tour O., Palmer A. E., Steinbach P. A., Baird G. S., Zacharias D. A., Tsien R. Y. 2002; A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882 [CrossRef]
    [Google Scholar]
  8. Canto T., Palukaitis P. 1998; Transgenically expressed cucumber mosaic virus RNA 1 simultaneously complements replication of cucumber mosaic virus RNAs 2 and 3 and confers resistance to systemic infection. Virology 250:325–336 [CrossRef]
    [Google Scholar]
  9. Canto T., Palukaitis P. 1999; Are tubules generated by the 3a protein necessary for cucumber mosaic virus movement?. Mol Plant Microbe Interact 12:985–993 [CrossRef]
    [Google Scholar]
  10. Canto T., Palukaitis P. 2001; A cucumber mosaic virus (CMV) RNA 1 transgene mediates suppression of the homologous viral RNA 1 constitutively and prevents CMV entry into the phloem. J Virol 75:9114–9120 [CrossRef]
    [Google Scholar]
  11. Canto T., Palukaitis P. 2002; A novel N gene-associated, temperature-independent resistance to the movement of Tobacco mosaic virus vectors, neutralized by a Cucumber mosaic virus RNA1 transgene. J Virol 76:12908–12916 [CrossRef]
    [Google Scholar]
  12. Canto T., Cillo F., Palukaitis P. 2002; Generation of siRNAs by T-DNA sequences does not require active transcription or homology to sequences in the plant. Mol Plant Microbe Interact 15:1137–1146 [CrossRef]
    [Google Scholar]
  13. Dawson W. O., Bubrick P., Grantham G. L. 1988; Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology 78:783–789 [CrossRef]
    [Google Scholar]
  14. Deom C. M., Oliver M. J., Beachy R. N. 1987; The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394 [CrossRef]
    [Google Scholar]
  15. Ding B., Haudenshield J. S., Hull R. J., Wolf S., Beachy R. N., Lucas W. J. 1992; Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928 [CrossRef]
    [Google Scholar]
  16. Ding X.-S., Liu J., Cheng N.-H., Folimonov A., Hou Y.-M., Bao Y., Katagi C., Carter S. A., Nelson R. S. 2004; The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol Plant Microbe Interact 17:583–592 [CrossRef]
    [Google Scholar]
  17. Fedorkin O. N., Denisenko O. N., Sitkov A. S., Zelenina D. A., Lukashova L. I., Morozov S. Y., Atabekov J. G. 1995; The tomato mosaic virus small gene-product forms stable complex with translation elongation factor EF-1- α . Dokl Acad Nauk 343:703–704
    [Google Scholar]
  18. Gal-On A., Kaplan I., Roossinck M. J., Palukaitis P. 1994; The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function for RNA 1 in virus movement. Virology 205:280–289 [CrossRef]
    [Google Scholar]
  19. Gillespie T., Boevink P., Haupt S., Roberts A. G., Toth R., Valentine T., Chapman S., Oparka K. J. 2002; Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus . Plant Cell 14:1207–1222 [CrossRef]
    [Google Scholar]
  20. Goelet P., Lomonossoff G. P., Butler P. J. G., Akam M. E., Gait M. J., Karn J. 1982; Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci U S A 79:5818–5822 [CrossRef]
    [Google Scholar]
  21. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1988; A conserved NTP-motif in putative helicases. Nature 333:22
    [Google Scholar]
  22. Grdzelishvili V. Z., Chapman S. N., Dawson W. O., Lewandowski D. J. 2000; Mapping of the Tobacco mosaic virus movement protein and coat protein subgenomic RNA promoters in vivo . Virology 275:177–192 [CrossRef]
    [Google Scholar]
  23. Guilley H., Jonard G., Kukla B., Richards K. E. 1979; Sequence of 1000 nucleotides at the 3′ end of tobacco mosaic virus RNA. Nucleic Acids Res 6:1287–1307 [CrossRef]
    [Google Scholar]
  24. Hodgman T. C. 1988; A new superfamily of replicative proteins. Nature 333:22–23
    [Google Scholar]
  25. Hunter T. R., Hunt T., Knowland J., Zimmern D. 1976; Messenger RNA for the coat protein of tobacco mosaic virus. Nature 260:759–764 [CrossRef]
    [Google Scholar]
  26. Itaya A., Matsuda Y., Gonzales R. A., Nelson R. S., Ding B. 2002; Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol Plant Microbe Interact 15:990–999 [CrossRef]
    [Google Scholar]
  27. Ivanov P. A., Karpova O. V., Skulachev M. V., Tomashevskaya O. L., Rodionova N. P., Dorokhov Y. L., Atabekov J. G. 1997; A tobamovirus genome that contains an internal ribosome entry site functional in vitro . Virology 232:32–43 [CrossRef]
    [Google Scholar]
  28. Knowland J., Hunter T., Hunt T., Zimmern D. 1975; Translation of tobacco mosaic virus RNA and isolation for the messenger for TMV coat protein. INSERM Colloq (Inst Nat Sant Rech Méd 47211–216
    [Google Scholar]
  29. Lewandowski D. J., Dawson W. O. 1998; Deletion of internal sequences results in tobacco mosaic virus defective RNAs that accumulate to high levels without interfering with replication of the helper virus. Virology 251:427–437 [CrossRef]
    [Google Scholar]
  30. Lewandowski D. J., Dawson W. O. 2000; Functions of the 126- and 183-kDa proteins of tobacco mosaic virus. Virology 271:90–98 [CrossRef]
    [Google Scholar]
  31. Li H.-W., Lucy A. P., Guo H.-S., Li W.-X., Ji L.-H., Wong S.-M., Ding S.-W. 1999; Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J 18:2683–2691 [CrossRef]
    [Google Scholar]
  32. MacFarlane S. A., Popovich A.-H. 2000; Expression of foreign proteins in roots from tobravirus vectors. Virology 267:29–35 [CrossRef]
    [Google Scholar]
  33. Morozov S. Y., Denisenko O. N., Zelenina D. A., Fedorkin O. N., Solovyev A. G., Maiss E., Casper R., Atabekov J. G. 1993; A novel open reading frame in tobacco mosaic virus genome coding for a putative small, positively charged protein. Biochimie 75:659–665 [CrossRef]
    [Google Scholar]
  34. Mueller A.-M., Mooney A. L., MacFarlane S. A. 1997; Replication of in vitro tobravirus recombinants shows that the specificity of template recognition is determined by 5′ non-coding but not 3′ non-coding sequences. J Gen Virol 78:2085–2088
    [Google Scholar]
  35. Palukaitis P., Kaplan I. B. 1997; Synergy of virus accumulation and pathology in transgenic plants expressing viral sequences. In Virus-resistant Transgenic Plants: Potential Ecological Impact pp  77–84 Edited by Tepfer M., Balázs E. Berlin: Springer;
    [Google Scholar]
  36. Palukaitis P., García-Arenal F., Sulzinski M. A., Zaitlin M. 1983; Replication of tobacco mosaic virus. VII. Further characterization of single- and double-stranded virus-related RNAs from TMV-infected plants. Virology 131:533–545 [CrossRef]
    [Google Scholar]
  37. Peart J. R., Cook G., Feys B. J., Parker J. E., Baulcombe D. C. 2002; An EDS1 orthologue is required for N -mediated resistance against tobacco mosaic virus. Plant J 29:569–579 [CrossRef]
    [Google Scholar]
  38. Pelham H. R. B. 1978; Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272:469–471 [CrossRef]
    [Google Scholar]
  39. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874
    [Google Scholar]
  40. Pruss G., Ge X., Shi X. M., Carrington J. C., Vance V. B. 1997; Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859–868 [CrossRef]
    [Google Scholar]
  41. Qiu W., Park J.-W., Scholthof H. B. 2002; Tombusvirus P19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol Plant Microbe Interact 15:269–280 [CrossRef]
    [Google Scholar]
  42. Qu F., Morris T. J. 2002; Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol Plant Microbe Interact 15:193–202 [CrossRef]
    [Google Scholar]
  43. Qu F., Ren T., Morris T. J. 2003; The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77:511–522 [CrossRef]
    [Google Scholar]
  44. Ratcliff F., Martín-Hernández A.-M., Baulcombe D. C. 2001; Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245
    [Google Scholar]
  45. Rizzo T. M., Palukaitis P. 1990; Construction of full-length cDNA clones of cucumber mosaic virus RNA1, RNA2 and RNA3: generation of infectious RNA transcripts. Mol Gen Genet 222:249–256 [CrossRef]
    [Google Scholar]
  46. Rozanov M. N., Koonin E. V., Gorbalenya A. E. 1992; Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. J Gen Virol 73:2129–2134 [CrossRef]
    [Google Scholar]
  47. Ruiz M. T., Voinnet O., Baulcombe D. C. 1998; Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946 [CrossRef]
    [Google Scholar]
  48. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Scholthof H. B., Scholthof K.-B. G., Jackson A. O. 1995; Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7:1157–1172 [CrossRef]
    [Google Scholar]
  50. Siegel A., Zaitlin M., Sehgal O. P. 1962; The isolation of defective tobacco mosaic virus strains. Proc Natl Acad Sci U S A 48:1845–1851 [CrossRef]
    [Google Scholar]
  51. Siegel A., Zaitlin M., Duda C. T. 1973; Replication of tobacco mosaic virus. IV. Further characterization of viral related RNAs. Virology 53:75–83 [CrossRef]
    [Google Scholar]
  52. Siegel A., Hari V., Kolacz K. 1978; The effect of tobacco mosaic virus infection on host and virus-specific protein synthesis in protoplasts. Virology 85:494–503 [CrossRef]
    [Google Scholar]
  53. Sulzinski M. A., Gabard K. A., Palukaitis P., Zaitlin M. 1985; Replication of tobacco mosaic virus. VIII. Characterization of a third subgenomic TMV RNA. Virology 145:132–140 [CrossRef]
    [Google Scholar]
  54. Thomas C. L., Leh V., Lederer C., Maule A. J. 2003; Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana . Virology 306:33–41 [CrossRef]
    [Google Scholar]
  55. Tomenius K., Clapham D., Meshi T. 1987; Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160:363–371 [CrossRef]
    [Google Scholar]
  56. Van Loon L. C., Van Kammen A. 1970; Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40:199–211 [CrossRef]
    [Google Scholar]
  57. Van Telgen H. J., Van Der Zaal E. J., Van Loon L. C. 1985; Evidence for an association between viral coat protein and host chromatin in mosaic-diseased tobacco leaves. Physiol Plant Pathol 26:83–98 [CrossRef]
    [Google Scholar]
  58. Voinnet O., Pinto Y. M., Baulcombe D. C. 1999; Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96:14147–14152 [CrossRef]
    [Google Scholar]
  59. Voinnet O., Rivas S., Mestre P., Baulcombe D. 2003; An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956 [CrossRef]
    [Google Scholar]
  60. Watanabe T., Honda A., Iwata A., Ueda S., Hibi T., Ishihama A. 1999; Isolation from tobacco mosaic virus-infected tobacco of a solubilized template-specific RNA-dependent RNA polymerase containing a 126K/183K protein heterodimer. J Virol 73:2633–2640
    [Google Scholar]
  61. Young N. D., Forney J., Zaitlin M. 1987; Tobacco mosaic virus replicase and replicative structures. J Cell Sci 7:S277–S285
    [Google Scholar]
  62. Zaitlin M., Hariharasubramanian V. 1972; A gel electrophoretic analysis of proteins from plants infected with tobacco mosaic and potato spindle tuber viruses. Virology 47:296–305 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80270-0
Loading
/content/journal/jgv/10.1099/vir.0.80270-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error