1887

Abstract

The P6 protein of (CaMV) transactivates translation of the CaMV 35S polycistronic pregenomic RNA and its spliced versions, and thus allows synthesis of a complete set of viral proteins. Previous studies have shown that P6 interacts with plant L18 and L24 ribosomal proteins and initiation factor eIF3, and it has been proposed that these interactions are involved in the reinitiation of translation of polycistronic viral RNAs. This study characterizes a novel cellular partner of P6, the ribosomal protein L13 from . Far-Western assays performed with several P6 deletion mutants have shown that L13 interacts with the miniTAV of P6, which represents the minimal domain for transactivation, suggesting that the P6–L13 interaction might also be involved in this process. L13 and L18 were found to bind to the same region within the miniTAV. Competition assays between L18 and L13 for binding to miniTAV suggest that interactions between P6 and these ribosomal proteins involve separate P6 molecules, and/or occur at different stages of translation or in the context of another function also mediated by P6.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80242-0
2004-12-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/12/vir853765.html?itemId=/content/journal/jgv/10.1099/vir.0.80242-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. ( 2000; ). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920.[CrossRef]
    [Google Scholar]
  3. Bertauche, N., Leung, J. & Giraudat, J. ( 1994; ). Conservation of the human breast basic conserved 1 gene in the plant kingdom: characterization of a cDNA clone from Arabidopsis thaliana. Gene 141, 211–214.[CrossRef]
    [Google Scholar]
  4. Bilgin, D. D., Liu, Y., Schiff, M. & Dinesh-Kumar, S. P. ( 2003; ). P58IPK, a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. Dev Cell 4, 651–661.[CrossRef]
    [Google Scholar]
  5. Bonneville, J. M., Sanfaçon, H., Fütterer, J. & Hohn, T. ( 1989; ). Posttranscriptional trans-activation in Cauliflower mosaic virus. Cell 59, 1135–1143.[CrossRef]
    [Google Scholar]
  6. Brinkmann, U., Mattes, R. E. & Buckel, P. ( 1989; ). High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85, 109–114.[CrossRef]
    [Google Scholar]
  7. Broglio, E. P. ( 1995; ). Mutational analysis of cauliflower mosaic virus gene VI: changes in host range, symptoms, and discovery of transactivation-positive, noninfectious mutants. Mol Plant Microbe Interact 8, 755–760.[CrossRef]
    [Google Scholar]
  8. Cerritelli, S. M., Fedoroff, O. Y., Reid, B. R. & Crouch, R. J. ( 1998; ). A common 40 amino acid motif in eukaryotic RNases H1 and caulimovirus ORF VI proteins binds to duplex RNAs. Nucleic Acids Res 26, 1834–1840.[CrossRef]
    [Google Scholar]
  9. Daubert, S. & Routh, G. ( 1990; ). Point mutations in cauliflower mosaic virus gene VI confer host-specific symptom changes. Mol Plant Microbe Interact 3, 341–345.[CrossRef]
    [Google Scholar]
  10. Delseny, M. & Hull, R. ( 1983; ). Isolation and characterization of faithful and altered clones of the genomes of cauliflower mosaic virus isolates Cabb B-JI, CM4-184, and Bari I. Plasmid 9, 31–41.[CrossRef]
    [Google Scholar]
  11. De Tapia, M., Himmelbach, A. & Hohn, T. ( 1993; ). Molecular dissection of the cauliflower mosaic virus translation transactivator. EMBO J 12, 3305–3314.
    [Google Scholar]
  12. Dieci, G., Bottarelli, L., Ballabeni, A. & Ottonello, S. ( 2000; ). tRNA-assisted overproduction of eukaryotic ribosomal proteins. Protein Expr Purif 18, 346–354.[CrossRef]
    [Google Scholar]
  13. Estruch, J. J., Crossland, L. & Goff, S. A. ( 1994; ). Plant activating sequences: positively charged peptides are functional as transcriptional activation domains. Nucleic Acids Res 22, 3983–3989.[CrossRef]
    [Google Scholar]
  14. Fütterer, J. & Hohn, T. ( 1996; ). Translation in plants – rules and exceptions. Plant Mol Biol 32, 159–189.[CrossRef]
    [Google Scholar]
  15. Geri, C., Cecchini, E., Giannakou, M. E., Covey, S. N. & Milner, J. J. ( 1999; ). Altered patterns of gene expression in Arabidopsis elicited by cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. Mol Plant Microbe Interact 12, 377–384.[CrossRef]
    [Google Scholar]
  16. Haas, M., Bureau, M., Geldreich, A., Yot, P. & Keller, M. ( 2002a; ). Cauliflower mosaic virus: still in the news. Mol Plant Pathol 3, 419–429.[CrossRef]
    [Google Scholar]
  17. Haas, M., Geldreich, A., Keller, M. & Yot, P. ( 2002b; ). Studies on the molecular mechanisms involved in the formation of viroplasms specific on infection by Cauliflower mosaic virus. In XIIth International Congress on Virology, abstract pp. 89-V-576. 27th July–1st August. Paris.
  18. Himmelbach, A., Chapdelaine, Y. & Hohn, T. ( 1996; ). Interaction between cauliflower mosaic virus inclusion body protein and capsid protein: implications for viral assembly. Virology 217, 147–157.[CrossRef]
    [Google Scholar]
  19. Kane, J. F. ( 1995; ). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6, 494–500.[CrossRef]
    [Google Scholar]
  20. Kiss-Laszlo, Z., Blanc, S. & Hohn, T. ( 1995; ). Splicing of cauliflower mosaic virus 35S RNA is essential for viral infectivity. EMBO J 14, 3552–3562.
    [Google Scholar]
  21. Kumar, K. U., Srivastava, S. P. & Kaufman, R. J. ( 1999; ). Double-stranded RNA-activated protein kinase (PKR) is negatively regulated by 60S ribosomal subunit protein L18. Mol Cell Biol 19, 1116–1125.
    [Google Scholar]
  22. Langland, J. O., Jin, S., Jacobs, B. L. & Roth, D. A. ( 1995; ). Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase. Plant Physiol 108, 1259–1267.[CrossRef]
    [Google Scholar]
  23. Langland, J. O., Langland, L. A., Browning, K. S. & Roth, D. A. ( 1996; ). Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro. J Biol Chem 271, 4539–4544.[CrossRef]
    [Google Scholar]
  24. Leh, V., Yot, P. & Keller, M. ( 2000; ). The cauliflower mosaic virus translational transactivator interacts with the 60S ribosomal subunit protein L18 of Arabidopsis thaliana. Virology 266, 1–7.[CrossRef]
    [Google Scholar]
  25. Li, Y. & Leisner, S. M. ( 2002; ). Multiple domains within the Cauliflower mosaic virus gene VI product interact with the full-length protein. Mol Plant Microbe Interact 15, 1050–1057.[CrossRef]
    [Google Scholar]
  26. Marion, M. J. & Marion, C. ( 1987; ). Localization of ribosomal proteins on the surface of mammalian 60S ribosomal subunits by means of immobilized enzymes. Correlation with chemical cross-linking data. Biochem Biophys Res Commun 149, 1077–1083.[CrossRef]
    [Google Scholar]
  27. Maule, A. J., Harker, C. L. & Wilson, I. G. ( 1989; ). The pattern of accumulation of cauliflower mosaic virus specific products in infected turnips. Virology 169, 436–446.[CrossRef]
    [Google Scholar]
  28. Mazzolini, L., Dabos, P., Constantin, S. & Yot, P. ( 1989; ). Further evidence that viroplasms are the site of cauliflower mosaic virus genome replication by reverse transcription during viral infection. J Gen Virol 70, 3439–3449.[CrossRef]
    [Google Scholar]
  29. Olvera, J. & Wool, I. G. ( 1994; ). The primary structure of rat ribosomal protein L13. Biochem Biophys Res Commun 201, 102–107.[CrossRef]
    [Google Scholar]
  30. Park, H.-S., Himmelbach, A., Browning, K. S., Hohn, T. & Ryabova, L. A. ( 2001; ). A plant viral ‘reinitiation’ factor interacts with the host translational machinery. Cell 106, 723–733.[CrossRef]
    [Google Scholar]
  31. Pooggin, M., Fütterer, J., Skryabin, K. & Hohn, T. ( 1999; ). A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol 80, 2217–2228.
    [Google Scholar]
  32. Pooggin, M., Hohn, T. & Fütterer, J. ( 2000; ). Role of a short open reading frame in ribosome shunt on the cauliflower mosaic virus RNA leader. J Biol Chem 275, 17288–17296.[CrossRef]
    [Google Scholar]
  33. Ryabova, L. A. & Hohn, T. ( 2000; ). Ribosome shunting in the cauliflower mosaic virus 35S RNA leader is a special case of reinitiation of translation functioning in plant and animal systems. Genes Dev 14, 817–829.
    [Google Scholar]
  34. Ryabova, L. A., Pooggin, M. M. & Hohn, T. ( 2002; ). Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Res Mol Biol 72, 1–39.
    [Google Scholar]
  35. Saez-Vasquez, J., Gallois, P. & Delseny, M. ( 2000; ). Accumulation and nuclear targeting of BnC24, a Brassica napus ribosomal protein corresponding to a mRNA accumulating in response to cold treatment. Plant Sci 156, 35–46.[CrossRef]
    [Google Scholar]
  36. Schoelz, J. E. & Shepherd, R. J. ( 1988; ). Host range control of cauliflower mosaic virus. Virology 162, 30–37.[CrossRef]
    [Google Scholar]
  37. Scholthof, H. B., Gowda, S., Wu, F. C. & Shepherd, R. J. ( 1992; ). The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans activated by the product of gene VI. J Virol 66, 3131–3139.
    [Google Scholar]
  38. Spahn, C. M., Beckmann, R., Eswar, N., Penczek, P. A., Sali, A., Blobel, G. & Frank, J. ( 2001; ). Structure of the 80S ribosome from Saccharomyces cerevisiae–tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386.[CrossRef]
    [Google Scholar]
  39. Wintermantel, W. M., Anderson, E. J. & Schoeltz, J. E. ( 1993; ). Identification of domains within gene VI of cauliflower mosaic virus that influence systemic infection of Nicotiana bigelovii in light-dependent manner. Virology 196, 789–798.[CrossRef]
    [Google Scholar]
  40. Wool, I. G. ( 1996; ). Extraribosomal functions of ribosomal proteins. Trends Biochem Sci 21, 164–165.[CrossRef]
    [Google Scholar]
  41. Xiong, C., Balàzs, E., Lebeurier, G., Hindenlang, C., Stoeckel, M. & Porte, A. ( 1982; ). Comparative cytology of two isolates of cauliflower mosaic virus. J Gen Virol 61, 75–81.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80242-0
Loading
/content/journal/jgv/10.1099/vir.0.80242-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error