Dual role of the adenovirus pVI C terminus as a nuclear localization signal and activator of the viral protease Free

Abstract

Adenain, the protease produced by adenovirus, is regulated by formation of a heterodimer with an 11 aa peptide derived from the C terminus of another adenoviral protein, pVI. Here, the role of the basic motif KRRR, which is conserved in pVI sequences from human adenovirus serotypes, was investigated. It was shown that this motif is less important than the N- or C-terminal regions in the formation of the adenain–peptide heterodimer and in the activity of the subsequent complex. This motif, however, acted as a nuclear localization signal that was capable of targeting heterologous proteins to the nucleus, resulting in a distinctive intranuclear distribution consisting of discrete foci, which is similar to that found for pVI during adenovirus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80203-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853367.html?itemId=/content/journal/jgv/10.1099/vir.0.80203-0&mimeType=html&fmt=ahah

References

  1. Anderson C. W. 1990; The proteinase polypeptide of adenovirus serotype 2 virions. Virology 177:259–272 [CrossRef]
    [Google Scholar]
  2. Anderson C. W., Baum P. R., Gesteland R. F. 1973; Processing of adenovirus 2-induced proteins. J Virol 12:241–252
    [Google Scholar]
  3. Atherton E., Cameron L. R., Sheppard R. C. 1988; Peptide synthesis. 10. Use of pentafluorophenyl esters of fluorenyl methoxycarbonylamino acids in solid phase peptide synthesis. Tetrahedron 44:843–857 [CrossRef]
    [Google Scholar]
  4. Baniecki M. L., McGrath W. J., McWhirter S. M., Li C., Toledo D. L., Pellicena P., Barnard D. L., Thorn K. S., Mangel W. F. 2001; Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc. Biochemistry 40:12349–12356 [CrossRef]
    [Google Scholar]
  5. Boudin M.-L., D'Halluin J.-C., Cousin C., Boulanger P. 1980; Human adenovirus type 2 protein IIIa. II. Maturation and encapsidation.. Virology 101:144–156 [CrossRef]
    [Google Scholar]
  6. Cabrita G., Iqbal M., Reddy H., Kemp G. 1997; Activation of the adenovirus protease requires sequence elements from both ends of the activating peptide. J Biol Chem 272:5635–5639 [CrossRef]
    [Google Scholar]
  7. Chen P. H., Ornelles D. A., Shenk T. 1993; The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol 67:3507–3514
    [Google Scholar]
  8. Ding J., McGrath W. J., Sweet R. M., Mangel W. F. 1996; Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. EMBO J 15:1778–1783
    [Google Scholar]
  9. Diouri M., Geoghegan K. F., Weber J. M. 1995; Functional characterization of the adenovirus proteinase using fluorogenic substrates. Protein Pept Lett 2:363–370
    [Google Scholar]
  10. Goldenberg D. P. 1989; Analysis of protein conformation by gel electrophoresis. In Protein Structure: A Practical Approach pp  225–250 Edited by Creighton T. Oxford: IRL Press;
    [Google Scholar]
  11. Greber U. F. 1998; Virus assembly and disassembly: the adenovirus cysteine protease as a trigger factor. Rev Med Virol 8:213–222 [CrossRef]
    [Google Scholar]
  12. Grierson A. W., Nicholson R., Talbot P., Webster A., Kemp G. 1994; The protease of adenovirus serotype 2 requires cysteine residues for both activation and catalysis. J Gen Virol 75:2761–2764 [CrossRef]
    [Google Scholar]
  13. Hong J. S., Engler J. A. 1991; The amino terminus of the adenovirus fiber protein encodes the nuclear localization signal. Virology 185:758–767 [CrossRef]
    [Google Scholar]
  14. Jones S. J., Iqbal M., Grierson A. W., Kemp G. 1996; Activation of the protease from human adenovirus type 2 is accompanied by a conformational change that is dependent on cysteine-104. J Gen Virol 77:1821–1824 [CrossRef]
    [Google Scholar]
  15. Kalderon D., Roberts B. L., Richardson W. D., Smith A. E. 1984; A short amino acid sequence able to specify nuclear location. Cell 39:499–509 [CrossRef]
    [Google Scholar]
  16. Lyons R. H., Ferguson B. Q., Rosenberg M. 1987; Pentapeptide nuclear localization signal in adenovirus E1a. Mol Cell Biol 7:2451–2456
    [Google Scholar]
  17. Mangel W. F., McGrath W. J., Toledo D. L., Anderson C. W. 1993; Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361:274–275 [CrossRef]
    [Google Scholar]
  18. McGrath W. J., Abola A. P., Toledo D. L., Brown M. T., Mangel W. F. 1996; Characterization of human adenovirus proteinase activity in disrupted virus particles. Virology 217:131–138 [CrossRef]
    [Google Scholar]
  19. McGrath W. J., Baniecki M. L., Li C., McWhirter S. M., Brown M. T., Toledo D. L., Mangel W. F. 2001; Human adenovirus proteinase: DNA binding and stimulation of proteinase activity by DNA. Biochemistry 40:13237–13245 [CrossRef]
    [Google Scholar]
  20. Roberts B. L., Richardson W. D., Smith A. E. 1987; The effect of protein context on nuclear location signal function. Cell 50:465–475 [CrossRef]
    [Google Scholar]
  21. Rodriguez M. S., Dargemont C., Hay R. T. 2001; SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276:12654–12659 [CrossRef]
    [Google Scholar]
  22. Russell W. C., Blair G. E. 1977; Polypeptide phosphorylation in adenovirus-infected cells. J Gen Virol 34:19–35 [CrossRef]
    [Google Scholar]
  23. Söling A., Simm A., Rainov N. G. 2002; Intracellular localization of herpes simplex virus type 1 thymidine kinase fused to different fluorescent proteins depends on choice of fluorescent tag. FEBS Lett 527:153–158 [CrossRef]
    [Google Scholar]
  24. Tremblay M. L., Dery C. V., Talbot B. G., Weber J. 1983; In vitro cleavage specificity of the adenovirus type 2 proteinase. Biochim Biophys Acta 743:239–245 [CrossRef]
    [Google Scholar]
  25. Weber J. 1976; Genetic analysis of adenovirus type 2. III. Temperature sensitivity of processing viral proteins. J Virol 17:462–471
    [Google Scholar]
  26. Webster A., Russell W. C., Kemp G. D. 1989; Characterization of the adenovirus proteinase: development and use of a specific peptide assay. J Gen Virol 70:3215–3223 [CrossRef]
    [Google Scholar]
  27. Webster A., Hay R. T., Kemp G. 1993; The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72:97–104 [CrossRef]
    [Google Scholar]
  28. Webster A., Leith I. R., Hay R. T. 1994; Activation of adenovirus-coded protease and processing of preterminal protein. J Virol 68:7292–7300
    [Google Scholar]
  29. Wodrich H., Guan T., Cingolani G., Von Seggern D., Nemerow G., Gerace L. 2003; Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. EMBO J 22:6245–6255 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80203-0
Loading
/content/journal/jgv/10.1099/vir.0.80203-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed