1887

Abstract

Human rhinovirus (HRV) 3C protease (3C) plays several important roles in the virus replication cycle. This enzyme cleaves the viral polyprotein at discrete sites to produce mature viral proteins and also inhibits cellular RNA transcription. It is not clear, however, whether the observed transcriptional shutoff activities are due to 3C itself or to 3C-containing precursors, and where 3C exerts its effects within infected cells. To address these questions HeLa cells were infected with HRV-16, stained with polyclonal antibodies directed against 3C and then analysed by laser confocal microscopy. Proteins containing 3C accumulated in nuclei 2–4 h post-infection, and progressively increased in the cytoplasm. Analyses of subcellular extracts demonstrated that 3CD′, a minor component among 3C precursors, gave rise to the earliest 3C nuclear signals. Mature 3C and another 3C precursor, 3CD, were also detected in the nucleus, cytoplasm and perinuclear membrane fractions 4 h post-infection. Transfecting cells with 3C, 3CD precursor and 3CD (with deletion of 371 aa at the carboxyl terminus of 3D) demonstrated that the nucleolar localization signal was near the amino terminus of 3D. In addition, 3C precursors were found to co-localize in nuclei with the transcription factor OCT-1 and the nucleolar chaperone B23. Finally, it was demonstrated that HRV-16 3C, 3CD and 3CD could cleave OCT-1. Collectively, these findings suggest that HRV 3CD′ and/or 3CD are specifically localized to the nucleoli of infected cells during the early stage of infection, and contribute to the inhibition of cellular RNA transcription via a proteolytic mechanism.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80164-0
2004-10-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir852969.html?itemId=/content/journal/jgv/10.1099/vir.0.80164-0&mimeType=html&fmt=ahah

References

  1. Aminev, A. G., Amineva, S. P. & Palmenberg, A. C. ( 2003; ). Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res 95, 59–73.[CrossRef]
    [Google Scholar]
  2. Banerjee, R., Tsai, W., Kim, W. & Dasgupta, A. ( 2001; ). Interaction of poliovirus-encoded 2C/2BC polypeptides with the 3′ terminus negative-strand cloverleaf requires an intact stem-loop b. Virology 280, 41–51.[CrossRef]
    [Google Scholar]
  3. Belov, G. A., Evstafieva, A. G., Rubtsov, Y. P., Mikitas, O. V., Vartapetian, A. B. & Agol, V. I. ( 2000; ). Early alteration of nucleocytoplasmic traffic induced by some RNA viruses. Virology 275, 244–248.[CrossRef]
    [Google Scholar]
  4. Beneduce, F., Ciervo, A., Kusov, Y., Gauss-Muller, V. & Morace, G. ( 1999; ). Mapping of protein domains of hepatitis A virus 3AB essential for interaction with 3CD and viral RNA. Virology 264, 410–421.[CrossRef]
    [Google Scholar]
  5. Bienz, K., Egger, D., Rasser, Y. & Bossart, W. ( 1982; ). Accumulation of poliovirus proteins in the host cell nucleus. Intervirology 18, 189–196.[CrossRef]
    [Google Scholar]
  6. Blom, N., Hansen, J., Blaas, D. & Brunak, S. ( 1996; ). Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5, 2203–2216.[CrossRef]
    [Google Scholar]
  7. Clark, M. E., Hammerle, T., Wimmer, E. & Dasgupta, A. ( 1991; ). Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO J 10, 2941–2947.
    [Google Scholar]
  8. Clark, M. E., Lieberman, P. M., Berk, A. J. & Dasgupta, A. ( 1993; ). Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol Cell Biol 13, 1232–1237.
    [Google Scholar]
  9. Cordingley, M. G., Register, R. B., Callahan, P. L., Garsky, V. M. & Colonno, R. J. ( 1989; ). Cleavage of small peptides in vitro by human rhinovirus 14 3C protease expressed in Escherichia coli. J Virol 63, 5037–5045.
    [Google Scholar]
  10. Davis, G. J., Wang, Q. M., Cox, G. A., Johnson, R. B., Wakulchik, M., Dotson, C. A. & Villarreal, E. C. ( 1997; ). Expression and purification of recombinant rhinovirus 14 3CD proteinase and its comparison to the 3C proteinase. Arch Biochem Biophys 346, 125–130.[CrossRef]
    [Google Scholar]
  11. Dingwall, C. & Laskey, R. ( 1992; ). The nuclear membrane. Science 258, 942–947.[CrossRef]
    [Google Scholar]
  12. Egger, D., Teterina, N., Ehrenfeld, E. & Bienz, K. ( 2000; ). Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol 74, 6570–6580.[CrossRef]
    [Google Scholar]
  13. Fernandez-Tomas, C. ( 1982; ). The presence of viral-induced proteins in nuclei from poliovirus-infected HeLa cells. Virology 116, 629–634.[CrossRef]
    [Google Scholar]
  14. Gradi, A., Svitkin, Y. V., Imataka, H. & Sonenberg, N. ( 1998; ). Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci U S A 95, 11089–11094.[CrossRef]
    [Google Scholar]
  15. Gustin, K. E. & Sarnow, P. ( 2001; ). Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J 20, 240–249.[CrossRef]
    [Google Scholar]
  16. Gustin, K. E. & Sarnow, P. ( 2002; ). Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J Virol 76, 8787–8796.[CrossRef]
    [Google Scholar]
  17. Haghighat, A., Svitkin, Y., Novoa, I., Kuechler, E., Skern, T. & Sonenberg, N. ( 1996; ). The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J Virol 70, 8444–8450.
    [Google Scholar]
  18. Hanecak, R., Semler, B. L., Anderson, C. W. & Wimmer, E. ( 1982; ). Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs. Proc Natl Acad Sci U S A 79, 3973–3977.[CrossRef]
    [Google Scholar]
  19. Harlow, E. & Lane, D. ( 1998; ). Monoclonal antibodies. In Antibodies: a Laboratory Manual, pp. 139–242. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  20. Harris, K. S., Xiang, W., Alexander, L., Lane, W. S., Paul, A. V. & Wimmer, E. ( 1994; ). Interaction of poliovirus polypeptide 3CDpro with the 5′ and 3′ termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. J Biol Chem 269, 27004–27014.
    [Google Scholar]
  21. Hu, Y., Fisette, P. L., Denlinger, L. C., Guadarrama, A. G., Sommer, J. A., Proctor, R. A. & Bertics, P. J. ( 1998; ). Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in RAW 264.7 macrophages. J Biol Chem 273, 27170–27175.[CrossRef]
    [Google Scholar]
  22. Hunt, S. L., Skern, T., Liebig, H. D., Kuechler, E. & Jackson, R. J. ( 1999; ). Rhinovirus 2A proteinase mediated stimulation of rhinovirus RNA translation is additive to the stimulation effected by cellular RNA binding proteins. Virus Res 62, 119–128.[CrossRef]
    [Google Scholar]
  23. Jang, S. K., Pestova, T. V., Hellen, C. U., Witherell, G. W. & Wimmer, E. ( 1990; ). Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44, 292–309.
    [Google Scholar]
  24. Jore, J., De Geus, B., Jackson, R. J., Pouwels, P. H. & Enger-Valk, B. E. ( 1988; ). Poliovirus protein 3CD is the active protease for processing of the precursor protein P1 in vitro. J Gen Virol 69, 1627–1636.[CrossRef]
    [Google Scholar]
  25. Ko, Y. G., Kang, Y. S., Kim, E. K., Park, S. G. & Kim, S. ( 2000; ). Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J Cell Biol 149, 567–574.[CrossRef]
    [Google Scholar]
  26. Korant, B. D. & Butterworth, B. E. ( 1976; ). Inhibition by zinc of rhinovirus protein cleavage: interaction of zinc with capsid polypeptides. J Virol 18, 298–306.
    [Google Scholar]
  27. Lee, C. K. & Wimmer, E. ( 1988; ). Proteolytic processing of poliovirus polyprotein: elimination of 2Apro-mediated, alternative cleavage of polypeptide 3CD by in vitro mutagenesis. Virology 166, 405–414.[CrossRef]
    [Google Scholar]
  28. Lee, W. M., Wang, W. & Rueckert, R. R. ( 1995; ). Complete sequence of the RNA genome of human rhinovirus 16, a clinically useful common cold virus belonging to the ICAM-1 receptor group. Virus Genes 9, 177–181.[CrossRef]
    [Google Scholar]
  29. Mosser, A. G., Brockman-Schneider, R., Amineva, S., Burchell, L., Sedgwick, J. B., Busse, W. W. & Gern, J. E. ( 2002; ). Similar frequency of rhinovirus-infectible cells in upper and lower airway epithelium. J Infect Dis 185, 734–743.[CrossRef]
    [Google Scholar]
  30. Pallansch, M. A., Kew, O. M., Semler, B. L., Omilianowski, D. R., Anderson, C. W., Wimmer, E. & Rueckert, R. R. ( 1984; ). Protein processing map of poliovirus. J Virol 49, 873–880.
    [Google Scholar]
  31. Palmenberg, A. C. & Sgro, J.-Y. ( 2001; ). Alignments and comparative profiles of picornavirus genera. In Molecular Biology of Picornaviruses, pp. 149–158. Edited by B. L. Semler & E. Wimmer. NY: ASM Press.
  32. Probst, C., Jecht, M. & Gauss-Muller, V. ( 1998; ). Processing of proteinase precursors and their effect on hepatitis A virus particle formation. J Virol 72, 8013–8020.
    [Google Scholar]
  33. Racaniello, V. R. ( 2001; ). Picornaviruses: the viruses and their replication. In Fields Virology, 4th edn, pp. 685–722. Edited by D. Knipe & P. Howley. Philadelphia: Lippincott Williams & Wilkins.
  34. Rubinstein, S. J., Hammerle, T., Wimmer, E. & Dasgupta, A. ( 1992; ). Infection of HeLa cells with poliovirus results in modification of a complex that binds to the rRNA promoter. J Virol 66, 3062–3068.
    [Google Scholar]
  35. Scheer, U. & Hock, R. ( 1999; ). Structure and function of the nucleolus. Curr Opin Cell Biol 11, 385–390.[CrossRef]
    [Google Scholar]
  36. Schultheiss, T., Kusov, Y. Y. & Gauss-Muller, V. ( 1994; ). Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. Virology 198, 275–281.[CrossRef]
    [Google Scholar]
  37. Shiroki, K., Isoyama, T., Kuge, S., Ishii, T., Ohmi, S., Hata, S., Suzuki, K., Takasaki, Y. & Nomoto, A. ( 1999; ). Intracellular redistribution of truncated La protein produced by poliovirus 3Cpro-mediated cleavage. J Virol 73, 2193–2200.
    [Google Scholar]
  38. Silver, P. A. ( 1991; ). How proteins enter the nucleus. Cell 64, 489–497.[CrossRef]
    [Google Scholar]
  39. Sipos, K. & Olson, M. O. ( 1991; ). Nucleolin promotes secondary structure in ribosomal RNA. Biochem Biophys Res Commun 177, 673–678.[CrossRef]
    [Google Scholar]
  40. Stugel, R., Timmers, A. C. J., Raue, H. A. & van'n Riet, J. ( 2000; ). Nuclear import of ribosomal proteins: evidence for a novel type of nucleolar localization signal. In The Ribosome Structure, Function, Antibiotics and Cellular Interaction, pp. 205–217. WA: ASM Press.
  41. Szebeni, A. & Olson, M. O. ( 1999; ). Nucleolar protein B23 has molecular chaperone activities. Protein Sci 8, 905–912.
    [Google Scholar]
  42. Szebeni, A., Herrera, J. E. & Olson, M. O. ( 1995; ). Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry 34, 8037–8042.[CrossRef]
    [Google Scholar]
  43. Szebeni, A., Mehrotra, B., Baumann, A., Adam, S. A., Wingfield, P. T. & Olson, M. O. ( 1997; ). Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry 36, 3941–3949.[CrossRef]
    [Google Scholar]
  44. Toyoda, H., Nicklin, M. J., Murray, M. G., Anderson, C. W., Dunn, J. J., Studier, F. W. & Wimmer, E. ( 1986; ). A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45, 761–770.[CrossRef]
    [Google Scholar]
  45. Wang, W., Lee, W. M., Mosser, A. G. & Rueckert, R. R. ( 1998; ). WIN 52035-dependent human rhinovirus 16: assembly deficiency caused by mutations near the canyon surface. J Virol 72, 1210–1218.
    [Google Scholar]
  46. Weidman, M. K., Yalamanchili, P., Ng, B., Tsai, W. & Dasgupta, A. ( 2001; ). Poliovirus 3C protease-mediated degradation of transcriptional activator p53 requires a cellular activity. Virology 291, 260–271.[CrossRef]
    [Google Scholar]
  47. Weidman, M. K., Sharma, R., Raychaudhuri, S., Kundu, P., Tsai, W. & Dasgupta, A. ( 2003; ). The interaction of cytoplasmic RNA viruses with the nucleus. Virus Res 95, 75–85.[CrossRef]
    [Google Scholar]
  48. Xiang, W., Harris, K. S., Alexander, L. & Wimmer, E. ( 1995; ). Interaction between the 5′-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. J Virol 69, 3658–3667.
    [Google Scholar]
  49. Yalamanchili, P., Harris, K., Wimmer, E. & Dasgupta, A. ( 1996; ). Inhibition of basal transcription by poliovirus: a virus-encoded protease (3Cpro) inhibits formation of TBP-TATA box complex in vitro. J Virol 70, 2922–2929.
    [Google Scholar]
  50. Yalamanchili, P., Datta, U. & Dasgupta, A. ( 1997a; ). Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J Virol 71, 1220–1226.
    [Google Scholar]
  51. Yalamanchili, P., Weidman, K. & Dasgupta, A. ( 1997b; ). Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 239, 176–185.[CrossRef]
    [Google Scholar]
  52. Ypma-Wong, M. F., Dewalt, P. G., Johnson, V. H., Lamb, J. G. & Semler, B. L. ( 1988; ). Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166, 265–270.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80164-0
Loading
/content/journal/jgv/10.1099/vir.0.80164-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error