1887

Abstract

The capsid protein (CA or p24) of human immunodeficiency virus type 1 (HIV-1) plays a major role both early and late in the virus replication cycle. Many studies have suggested that the C-terminal domain of this protein is involved in dimerization and proper assembly of the viral core. Point mutations were introduced in two conserved sites of this region and their effects on viral protein expression, particle assembly and infectivity were studied. Eight different mutants (L205A+P207A, L205A, P207A, 223GPG225AAA, G223A, P224A, G225A and V221G) of the infectious clone pNL4-3 were constructed. Most substitutions had no substantial effect on HIV-1 protein synthesis, yet they impaired viral infectivity and particle production. The two mutants P207A and V221G also had a profound effect on Gag–Pol protein processing in HeLa–tat cells. However, these results were cell line-specific and Gag–Pol processing of P207A was not affected in 293T cells. In HeLa–tat cells, no virus particles were detected with the P207A mutation, whereas the other mutant virus particles were heterogeneous in size and morphology. None of the mutants showed normal, mature, conical core structures in HeLa–tat cells. These results indicate that the two conserved sequences in the C-terminal CA domain are essential for proper morphogenesis and infectivity of HIV-1 particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80137-0
2004-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir852903.html?itemId=/content/journal/jgv/10.1099/vir.0.80137-0&mimeType=html&fmt=ahah

References

  1. Berthet-Colominas C., Monaco S., Novelli A., Sibaï G., Mallet F., Cusack S. 1999; Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J 18:1124–1136 [CrossRef]
    [Google Scholar]
  2. Borsetti A., Öhagen Å., Göttlinger H. G. 1998; The C-terminal half of the human immunodeficiency virus type 1 Gag precursor is sufficient for efficient particle assembly. J Virol 72:9313–9317
    [Google Scholar]
  3. Chen Y.-L., Ts'ai P.-W., Yang C.-C., Wang C.-T. 1997; Generation of infectious virus particles by transient co-expression of human immunodeficiency virus type 1 gag mutants. J Gen Virol 78:2497–2501
    [Google Scholar]
  4. Chiu H.-C., Yao S.-Y., Wang C.-T. 2002; Coding sequences upstream of the human immunodeficiency virus type 1 reverse transcriptase domain in Gag-Pol are not essential for incorporation of the Pr160 gag-pol into virus particles. J Virol 76:3221–3231 [CrossRef]
    [Google Scholar]
  5. Dorfman T., Bukovsky A., Öhagen Å., Höglund S., Göttlinger H. G. 1994; Functional domains of the capsid protein of human immunodeficiency virus type 1. J Virol 68:8180–8187
    [Google Scholar]
  6. Forshey B. M., von Schwedler U., Sundquist W. I., Aiken C. 2002; Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76:5667–5677 [CrossRef]
    [Google Scholar]
  7. Freed E. O. 1998; HIV-1 Gag proteins: diverse functions in the virus life cycle. Virology 251:1–15 [CrossRef]
    [Google Scholar]
  8. Furuta R. A., Shimano R., Ogasawara T., Inubushi R., Amano K., Akari H., Hatanaka M., Kawamura M., Adachi A. 1997; HIV-1 capsid mutants inhibit the replication of wild-type virus at both early and late infection phases. FEBS Lett 415:231–234 [CrossRef]
    [Google Scholar]
  9. Gamble T. R., Vajdos F. F., Yoo S., Worthylake D. K., Houseweart M., Sundquist W. I., Hill C. P. 1996; Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87:1285–1294 [CrossRef]
    [Google Scholar]
  10. Gamble T. R., Yoo S., Vajdos F. F., von Schwedler U. K., Worthylake D. K., Wang H., McCutcheon J. P., Sundquist W. I., Hill C. P. 1997; Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278:849–853 [CrossRef]
    [Google Scholar]
  11. Ganser B. K., Li S., Klishko V. Y., Finch J. T., Sundquist W. I. 1999; Assembly and analysis of conical models for the HIV-1 core. Science 283:80–83 [CrossRef]
    [Google Scholar]
  12. Gelderblom H. R., Hausmann E. H. S., Özel M., Pauli G., Koch M. A. 1987; Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156:171–176 [CrossRef]
    [Google Scholar]
  13. Gitti R. K., Lee B. M., Walker J., Summers M. F., Yoo S., Sundquist W. I. 1996; Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273:231–235 [CrossRef]
    [Google Scholar]
  14. Göttlinger H. G., Sodroski J. G., Haseltine W. A. 1989; Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 86:5781–5785 [CrossRef]
    [Google Scholar]
  15. Hadzopoulou-Cladaras M., Felber B. K., Cladaras C., Athanassopoulos A., Tse A., Pavlakis G. N. 1989; The rev ( trs / art ) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis -acting sequence in the env region. J Virol 63:1265–1274
    [Google Scholar]
  16. Hinkula J., Rosen J., Sundqvist V.-A., Stigbrand T., Wahren B. 1990; Epitope mapping of the HIV-1 gag region with monoclonal antibodies. Mol Immunol 27:395–403 [CrossRef]
    [Google Scholar]
  17. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  18. Höglund S., Ofverstedt L. G., Nilsson A., Lundquist P., Gelderblom H., Ozel M., Skoglund U. 1992; Spatial visualization of the maturing HIV-1 core and its linkage to the envelope. AIDS Res Hum Retrovir 8:1–7 [CrossRef]
    [Google Scholar]
  19. Höglund S., Su J., Reneby S. S. 7 other authors 2002; Tripeptide interference with human immunodeficiency virus type 1 morphogenesis. Antimicrob Agents Chemother 46:3597–3605 [CrossRef]
    [Google Scholar]
  20. Huang M., Martin M. A. 1997; Incorporation of Pr160 gag-pol into virus particles requires the presence of both the major homology region and adjacent C-terminal capsid sequences within the Gag-Pol polyprotein. J Virol 71:4472–4478
    [Google Scholar]
  21. Kaplan A. H., Swanstrom R. 1991; Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc Natl Acad Sci U S A 88:4528–4532 [CrossRef]
    [Google Scholar]
  22. Kaplan A. H., Manchester M., Swanstrom R. 1994; The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68:6782–6786
    [Google Scholar]
  23. Karacostas V., Wolffe E. J., Nagashima K., Gonda M. A., Moss B. 1993; Overexpression of the HIV-1 Gag-Pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193:661–671 [CrossRef]
    [Google Scholar]
  24. Kattenbeck B., Rohrhofer A., Niedrig M., Wolf H., Modrow S. 1996; Defined amino acids in the gag proteins of human immunodeficiency virus type 1 are functionally active during virus assembly. Intervirology 39:32–39 [CrossRef]
    [Google Scholar]
  25. Kattenbeck B., von Poblotzki A., Rohrhofer A., Wolf H., Modrow S. 1997; Inhibition of human immunodeficiency virus type 1 particle formation by alterations of defined amino acids within the C terminus of the capsid protein. J Gen Virol 78:2489–2496
    [Google Scholar]
  26. Kotsopoulou E., Kim V. N., Kingsman A. J., Kingsman S. M., Mitrophanous K. A. 2000; A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag - pol gene. J Virol 74:4839–4852 [CrossRef]
    [Google Scholar]
  27. Lee Y.-M., Tian C.-J., Yu X.-F. 1998; A bipartite membrane-binding signal in the human immunodeficiency virus type 1 matrix protein is required for the proteolytic processing of Gag precursors in a cell type-dependent manner. J Virol 72:9061–9068
    [Google Scholar]
  28. Li S., Hill C. P., Sundquist W. I., Finch J. T. 2000; Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407:409–413 [CrossRef]
    [Google Scholar]
  29. Luban J., Lee C., Goff S. P. 1993; Effect of linker insertion mutations in the human immunodeficiency virus type 1 gag gene on activation of viral protease expressed in bacteria. J Virol 67:3630–3634
    [Google Scholar]
  30. Momany C., Kovari L. C., Prongay A. J. 10 other authors 1996; Crystal structure of dimeric HIV-1 capsid protein. Nat Struct Biol 3:763–770 [CrossRef]
    [Google Scholar]
  31. Myers G., Berzofsky J. A., Korber B., Smith R. F., Pavlakis G. N. 1991 Human Retroviruses and AIDS: a Compilation and Analysis of Nucleic and Amino Acid Sequences Los Alamos, NM: Los Alamos National Laboratory;
    [Google Scholar]
  32. Ott D. E. 2002; Potential roles of cellular proteins in HIV-1. Rev Med Virol 12:359–374 [CrossRef]
    [Google Scholar]
  33. Parker S. D., Hunter E. 2000; A cell-line-specific defect in the intracellular transport and release of assembled retroviral capsids. J Virol 74:784–795 [CrossRef]
    [Google Scholar]
  34. Pettit S. C., Moody M. D., Wehbie R. S., Kaplan A. H., Nantermet P. V., Klein C. A., Swanstrom R. 1994; The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68:8017–8027
    [Google Scholar]
  35. Sakuragi J., Sakai H., Kawamura M., Tokunaga K., Ueda S., Adachi A. 1995; Generation and characterization of a host cell-dependent gag gene mutant of human immunodeficiency virus type 1. Virology 212:251–254 [CrossRef]
    [Google Scholar]
  36. Schneider R., Campbell M., Nasioulas G., Felber B. K., Pavlakis G. N. 1997; Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/Protease and particle formation. J Virol 71:4892–4903
    [Google Scholar]
  37. Schwartz S., Felber B. K., Pavlakis G. N. 1991; Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is Rev-dependent and regulated by splicing. Virology 183:677–686 [CrossRef]
    [Google Scholar]
  38. Srinivasakumar N., Hammarskjöld M.-L., Rekosh D. 1995; Characterization of deletion mutations in the capsid region of human immunodeficiency virus type 1 that affect particle formation and Gag-Pol precursor incorporation. J Virol 69:6106–6114
    [Google Scholar]
  39. Su J., Palm A., Wu Y., Sandin S., Höglund S., Vahlne A. 2000; Deletion of the GPG motif in the HIV type 1 V3 loop does not abrogate infection in all cells. AIDS Res Hum Retrovir 16:37–48 [CrossRef]
    [Google Scholar]
  40. Szilvay A. M., Nornes S., Haugan I. R., Olsen L., Prasad V. R., Endresen C., Goff S. P., Helland D. E. 1992; Epitope mapping of HIV-1 reverse transcriptase with monoclonal antibodies that inhibit polymerase and RNase H activities. J Acquir Immune Defic Syndr 5:647–657
    [Google Scholar]
  41. Talbott R. L., Sparger E. E., Lovelace K. M., Fitch W. M., Pedersen N. C., Luciw P. A., Elder J. H. 1989; Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proc Natl Acad Sci U S A 86:5743–5747 [CrossRef]
    [Google Scholar]
  42. Vogt V. M. 1996; Proteolytic processing and particle maturation. Curr Top Microbiol Immunol 214:95–131
    [Google Scholar]
  43. von Poblotzki A., Wagner R., Niedrig M., Wanner G., Wolf H., Modrow S. 1993; Identification of a region in the Pr55 gag -polyprotein essential for HIV-1 particle formation. Virology 193:981–985 [CrossRef]
    [Google Scholar]
  44. von Schwedler U. K., Stray K. M., Garrus J. E., Sundquist W. I. 2003; Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 77:5439–5450 [CrossRef]
    [Google Scholar]
  45. Worthylake D. K., Wang H., Yoo S., Sundquist W. I., Hill C. P. 1999; Structures of the HIV-1 capsid protein dimerization domain at 2·6 Å resolution. Acta Crystallogr Sect D Biol Crystallogr 55:85–92 [CrossRef]
    [Google Scholar]
  46. Yoo S., Myszka D. G., Yeh C., McMurray M., Hill C. P., Sundquist W. I. 1997; Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J Mol Biol 269:780–795 [CrossRef]
    [Google Scholar]
  47. Yuan X., Yu X., Lee T.-H., Essex M. 1993; Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J Virol 67:6387–6394
    [Google Scholar]
  48. Zhang W.-H., Hockley D. J., Nermut M. V., Morikawa Y., Jones I. M. 1996; Gag–Gag interactions in the C-terminal domain of human immunodeficiency virus type 1 p24 capsid antigen are essential for Gag particle assembly. J Gen Virol 77:743–751 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80137-0
Loading
/content/journal/jgv/10.1099/vir.0.80137-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error