1887

Abstract

A recombination map of the genome of (TuMV) was assembled using data from 19 complete genomic sequences, previously reported, and a composite sample of three regions of the genome, one-third in total, of a representative Asia-wide collection of 70 isolates. Thus, a total of 89 isolates of worldwide origin was analysed for recombinants. Eighteen recombination sites were found spaced throughout the 5′ two-thirds of the genome, but there were only two in the 3′ one-third; thus, 24 and 35 % of the P1 and NIa-VPg gene sequences examined were recombinants, whereas only 1 % of the corresponding NIa-Pro and CP gene sequences were recombinants. Recombinants with parents from the same or from different lineages were found, and some recombination sites characterized particular lineages. Most of the strain BR recombinants belonged to the Asian-BR group, as defined previously, and it was concluded that this lineage resulted from a recent migration, whereas many of the strain B recombinants from Asia fell into the world-B group. Again, a large proportion of isolates in this group were recombinants. Some recombination sites were found only in particular lineages, and hence seemed more likely to be the surviving progeny from single recombinational events, rather than the progeny of multiple events occurring at recombination hotspots. It seems that the presence of recombination sites, as well as sequence similarities, may be used to trace the migration and evolution of TuMV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80124-0
2004-09-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852683.html?itemId=/content/journal/jgv/10.1099/vir.0.80124-0&mimeType=html&fmt=ahah

References

  1. Bateson, M. F., Lines, R. E., Revill, P., Chaleeprom, W., Ha, C. V., Gibbs, A. J. & Dale, J. L. ( 2002; ). On the evolution and molecular epidemiology of the potyvirus Papaya ringspot virus. J Gen Virol 83, 2575–2585.
    [Google Scholar]
  2. Berger, P. H., Barnett, O. W., Brunt, A. A. & 14 other authors ( 2000; ). Family Potyviridae. In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses, pp. 703–724. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. New York: Academic Press.
  3. Bousalem, M., Douzery, E. J. P. & Fargette, D. ( 2000; ). High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of Yam mosaic virus: a contribution to understanding potyvirus evolution. J Gen Virol 81, 243–255.
    [Google Scholar]
  4. Chen, Y.-K., Goldbach, R. & Prins, M. ( 2002a; ). Inter- and intramolecular recombinations in the Cucumber mosaic virus genome related to adaptation in Alstroemeria. J Virol 76, 4119–4124.[CrossRef]
    [Google Scholar]
  5. Chen, J., Zheng, H. Y., Chen, J. P. & Adams, M. J. ( 2002b; ). Characterisation of a potyvirus and a potexvirus from Chinese scallion. Arch Virol 147, 683–693.[CrossRef]
    [Google Scholar]
  6. Chen, J., Chen, J. P., Langeveld, S. A., Derks, A. F. L. M. & Adams, M. J. ( 2003; ). Molecular characterization of carla- and potyviruses from Narcissus in China. J Phytopathol 151, 26–29.[CrossRef]
    [Google Scholar]
  7. Choi, J. K., Maeda, T. & Wakimoto, S. ( 1977; ). An improved method for purification of turnip mosaic virus. Ann Phytopathol Soc Jpn 43, 440–448.[CrossRef]
    [Google Scholar]
  8. Choi, I.-R., Horken, K. M., Stenger, D. C. & French, R. ( 2002; ). Mapping of the P1 proteinase cleavage site in the polyprotein of Wheat streak mosaic virus (genus Tritimovirus). J Gen Virol 83, 443–450.
    [Google Scholar]
  9. Cornelissen, M., van den Burg, R., Zorgdrager, F. & Goudsmit, J. ( 2000; ). Spread of distinct human immunodeficiency virus type 1 AG recombinant lineage in Africa. J Gen Virol 81, 515–523.
    [Google Scholar]
  10. Dayhoff, M. O., Barker, W. C. & Hunt, L. T. ( 1983; ). Establishing homologies in protein sequences. Methods Enzymol 91, 524–545.
    [Google Scholar]
  11. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  12. Felsenstein, J. ( 1993; ). phylip (phylogeny interference package), version 3.5. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.
  13. Fuji, S. & Nakamae, H. ( 1999; ). Complete nucleotide sequence of the genomic RNA of a Japanese yam mosaic virus, a new potyvirus in Japan. Arch Virol 144, 231–240.[CrossRef]
    [Google Scholar]
  14. Fuji, S. & Nakamae, H. ( 2000; ). Complete nucleotide sequence of the genomic RNA of a mild strain of Japanese yam mosaic potyvirus in Japan. Arch Virol 145, 635–640.[CrossRef]
    [Google Scholar]
  15. García-Arenal, F., Fraile, A. & Malpica, J. M. ( 2001; ). Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39, 157–186.[CrossRef]
    [Google Scholar]
  16. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. ( 2000; ). Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573–582. http://www.anu.edu.au/BoZo/software/ [CrossRef]
    [Google Scholar]
  17. Glais, L., Tribodet, M. & Kerlan, C. ( 2002; ). Genomic variability in Potato potyvirus Y (PVY): evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Arch Virol 147, 363–378.[CrossRef]
    [Google Scholar]
  18. Glasa, M., Marie-Jeanne, V., Labonne, G., Šubr, Z., Kúdela, O. & Quiot, J.-B. ( 2002; ). A natural population of recombinant Plum pox virus is viable and competitive under field conditions. Eur J Plant Pathol 108, 843–853.[CrossRef]
    [Google Scholar]
  19. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  20. Hamlyn, B. M. G. ( 1953; ). Quantitative studies on the transmission of cabbage black ringspot virus by Myzus persicae (Sulz.). Ann Appl Biol 40, 393–402.[CrossRef]
    [Google Scholar]
  21. Hasegawa, M., Kishino, H. & Yano, T. ( 1985; ). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  22. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. ( 1998; ). Multiple sequence alignment with Clustal X. Trends Biochem Sci 23, 403–405.[CrossRef]
    [Google Scholar]
  23. Jenner, C. E., Tomimura, K., Ohshima, K., Hughes, S. L. & Walsh, J. A. ( 2002; ). Mutations in Turnip mosaic virus P3 and cylindrical inclusion protein are required to overcome two Brassica napus resistance genes. Virology 300, 50–59.[CrossRef]
    [Google Scholar]
  24. Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F. & Walsh, J. A. ( 2003; ). The dual role of the potyvirus P3 protein on Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16, 777–784.[CrossRef]
    [Google Scholar]
  25. Kasschau, K. D. & Carrington, J. C. ( 1998; ). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470.[CrossRef]
    [Google Scholar]
  26. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  27. Monci, F., Sanchez-Campos, S., Navas-Castillo, J. & Moriones, E. ( 2002; ). A natural recombinant between the geminiviruses tomato yellow leaf curl Sardinia virus and tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.[CrossRef]
    [Google Scholar]
  28. Moreno, I. M., Malpica, J. M., Díaz-Pendón, J. A., Moriones, E., Fraile, A. & García-Arenal, F. ( 2004; ). Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology 318, 451–460.[CrossRef]
    [Google Scholar]
  29. Moury, B., Morel, C., Johansen, E. & Jacquemond, M. ( 2002; ). Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. J Gen Virol 83, 2563–2573.
    [Google Scholar]
  30. Myers, G., MacInnes, K. & Myers, L. ( 1993; ). Phylogenetic moments in the AIDS epidemic. In Emerging Viruses, pp. 120–137. Edited by S. S. Morse. New York: Oxford University Press.
  31. Nicolas, O. & Laliberté, J.-F. ( 1992; ). The complete nucleotide sequence of turnip mosaic potyvirus RNA. J Gen Virol 73, 2785–2793.[CrossRef]
    [Google Scholar]
  32. Ohshima, K., Tanaka, M. & Sako, N. ( 1996; ). The complete nucleotide sequence of turnip mosaic virus RNA Japanese strain. Arch Virol 141, 1991–1997.[CrossRef]
    [Google Scholar]
  33. Ohshima, K., Yamaguchi, Y., Hirota, R. & 10 other authors ( 2002; ). The molecular evolution of Turnip mosaic virus; evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83, 1511–1521.
    [Google Scholar]
  34. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  35. Provvidenti, R. ( 1996; ). Turnip mosaic potyvirus. In Viruses of Plants, pp. 1340–1343. Edited by A. A. Brunt, K. Crabtree, M. J. Dallwitz, A. J. Gibbs & L. Watson. Wallingford, UK: CAB International.
  36. Riechmann, J. L., Laín, S. & García, J. A. ( 1992; ). Highlights and prospects of potyvirus molecular biology. J Gen Virol 73, 1–16.[CrossRef]
    [Google Scholar]
  37. Roossinck, M. ( 1997; ). Mechanisms of plant virus evolution. Annu Rev Phytopathol 35, 191–209.[CrossRef]
    [Google Scholar]
  38. Roossinck, M. J., Zhang, L. & Hellwald, K.-H. ( 1999; ). Rearrangements in the 5′ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. J Virol 73, 6752–6758.
    [Google Scholar]
  39. Rubio, L., Angeles, M., Ayllón, A., Kong, P., Fernández, A., Polek, M., Guerri, J., Moreno, P. & Falk, B. W. ( 2001; ). Genetic variation of Citrus tristeza virus isolates from California and Spain: evidence for mixed infections and recombination. J Virol 75, 8054–8062.[CrossRef]
    [Google Scholar]
  40. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  41. Shukla, D. D., Ward, C. W. & Brunt, A. A. ( 1994; ). 1. Introduction. In The Potyviridae, pp. 1–26. Edited by D. D. Shukla, C. W. Ward & A. A. Brunt. Wallingford, UK: CAB International.
  42. Simon, A. E. & Bujarski, J. J. ( 1994; ). RNA–RNA recombination and evolution in virus-infected plants. Annu Rev Phytopathol 32, 337–362.[CrossRef]
    [Google Scholar]
  43. Sironen, T., Vaheri, A. & Plyusnin, A. ( 2001; ). Molecular evolution of Puumala hantavirus. J Virol 75, 11803–11810.[CrossRef]
    [Google Scholar]
  44. Stenger, D. C., Seifers, D. L. & French, R. ( 2002; ). Patterns of polymorphism in wheat streak mosaic virus: sequence space explored by a clade of closely related viral genotypes rivals that between the most divergent strains. Virology 302, 58–70.[CrossRef]
    [Google Scholar]
  45. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  46. Strimmer, K., Goldman, N. & von Haeseler, A. ( 1997; ). Bayesian probabilities and quartet puzzling. Mol Biol Evol 14, 210–211.[CrossRef]
    [Google Scholar]
  47. Swofford, D. L. ( 1998; ). paup. Phylogenetic analysis using parsimony. Version 4. Sunderland, MA: Sinauer Associates.
  48. Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A. & Ohshima, K. ( 2003; ). The phylogeny of Turnip mosaic virus; comparisons of thirty-eight genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol Ecol 12, 2099–2111.[CrossRef]
    [Google Scholar]
  49. Tomlinson, J. A. ( 1987; ). Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110, 661–681.[CrossRef]
    [Google Scholar]
  50. Urcuqui-Inchima, S., Haenni, A.-L. & Bernardi, F. ( 2001; ). Potyvirus proteins: a wealth of functions. Virus Res 74, 157–175.[CrossRef]
    [Google Scholar]
  51. Verchot, J., Herndon, K. L. & Carrington, J. C. ( 1992; ). Mutational analysis of the tobacco etch potyviral 35-kDa proteinase: identification of essential residues and requirements for autoproteolysis. Virology 190, 298–306.[CrossRef]
    [Google Scholar]
  52. Walsh, J. A. & Jenner, C. E. ( 2002; ). Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3, 289–300.[CrossRef]
    [Google Scholar]
  53. Weiller, G. F. ( 1998; ). Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol 15, 326–335.[CrossRef]
    [Google Scholar]
  54. Xia, X. & Xie, Z. ( 2001; ). dambe: software package for data analysis in molecular biology and evolution. J Hered 92, 371–373.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80124-0
Loading
/content/journal/jgv/10.1099/vir.0.80124-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error