Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine Free

Abstract

Some of the structural proteins of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) carry major epitopes involved in virus neutralization and are essential for the induction of protective humoral responses and the development of an effective vaccine. Rabbit antisera were prepared using full-length N and M proteins and eight expressed fragments covering the S protein. Antisera to S and M proteins were found to have different neutralizing titres towards SARS-CoV infection , ranging from 1 : 35 to 1 : 128. Antiserum to the N protein did not contain neutralizing antibodies. Epitopes inducing protective humoral responses to virus infection were located mainly in the M protein and a region spanning residues 13–877 of the S protein. The neutralizing ability of antisera directed against the expressed structural proteins was greater than that of convalescent patient antisera, confirming that, as immunogens, the former induce strong, SARS-CoV-specific neutralizing antibody responses. The neutralization assay has important implications for the design of an effective, protein-based vaccine preventing SARS-CoV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80111-0
2004-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir853109.html?itemId=/content/journal/jgv/10.1099/vir.0.80111-0&mimeType=html&fmt=ahah

References

  1. Cyranoski D. 2004; Swift response greets return of SARS in China. Nature 427:89
    [Google Scholar]
  2. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J Gen Virol 67:1405–1418 [CrossRef]
    [Google Scholar]
  3. Drosten C., Gunther S., Preiser W. 23 other authors 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [CrossRef]
    [Google Scholar]
  4. Endres M. J., Clapham P. R., Marsh M. 13 other authors 1996; CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87:745–756 [CrossRef]
    [Google Scholar]
  5. Fouchier R. A., Kuiken T., Schutten M. 7 other authors 2003; Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423:240 [CrossRef]
    [Google Scholar]
  6. Gao W., Tamin A., Soloff A., D'Aiuto L., Nwanegbo E., Robbins P. D., Bellini W. J., Barratt-Boyes S., Gambotto A. 2003; Effects of a SARS associated coronavirus vaccine in monkeys. Lancet 362:1895–1896 [CrossRef]
    [Google Scholar]
  7. Guan Y., Zheng B. J., He Y. Q. 15 other authors 2003; Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278 [CrossRef]
    [Google Scholar]
  8. Lee N., Hui D., Wu A. 11 other authors 2003; A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348:1986–1994 [CrossRef]
    [Google Scholar]
  9. Li W., Moore M. J., Vasilieva N. 9 other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  10. Martin T., Parker S. E., Hedstrom R., Le T., Hoffman S. L., Norman J., Hobart P., Lew D. 1999; Plasmid DNA malaria vaccine: the potential for genomic integration after intramuscular injection. Hum Gene Ther 10:759–768 [CrossRef]
    [Google Scholar]
  11. Martina B. E., Haagmans B. L., Kuiken T., Fouchier R. A., Rimmelzwaan G. F., Van Amerongen G., Peiris J. S., Lim W., Osterhaus A. D. 2003; Virology: SARS virus infection of cats and ferrets. Nature 425:915 [CrossRef]
    [Google Scholar]
  12. Nason E. L., Wetzel J. D., Mukherjee S. K., Barton E. S., Prasad B. V., Dermody T. S. 2001; A monoclonal antibody specific for reovirus outer-capsid protein σ 3 inhibits σ 1-mediated hemagglutination by steric hindrance. J Virol 75:6625–6634 [CrossRef]
    [Google Scholar]
  13. Oberlin E., Amara A., Bachelerie F. 10 other authors 1996; The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382:833–835 [CrossRef]
    [Google Scholar]
  14. Poutanen S. M., Low D. E., Henry B. 11 other authors 2003; Identification of severe acute respiratory syndrome in Canada. N Engl J Med 348:1995–2005 [CrossRef]
    [Google Scholar]
  15. Risco C., Anton I. M., Sune C., Pedregosa A. M., Martin-Alonso J. M., Parra F., Carrascosa J. L., Enjuanes L. 1995; Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J Virol 69:5269–5277
    [Google Scholar]
  16. Rota P. A., Oberste M. S., Monroe S. S. 32 other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef]
    [Google Scholar]
  17. Sune C., Jimenez G., Correa I., Bullido M. J., Gebauer F., Smerdou C., Enjuanes L. 1990; Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology 177:559–569 [CrossRef]
    [Google Scholar]
  18. Trkola A., Dragic T., Arthos J. 7 other authors 1996; CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384:184–187 [CrossRef]
    [Google Scholar]
  19. Vennema H., de Groot R. J., Harbour D. A., Dalderup M., Gruffydd-Jones T., Horzinek M. C., Spaan W. J. 1990; Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol 64:1407–1409
    [Google Scholar]
  20. Wong S. K., Li W., Moore M. J., Choe H., Farzan M. 2003; A 193-amino-acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279:3197–3201 [CrossRef]
    [Google Scholar]
  21. Woods R. D., Wesley R., Kapke P. A. 1987; Complement-dependent neutralization of transmissible gastroenteritis virus by monoclonal antibodies. Adv Exp Med Biol 218:493–500
    [Google Scholar]
  22. Wu L., Gerard N. P., Wyatt R. 9 other authors 1996; CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor. Nature 384:179–183 [CrossRef]
    [Google Scholar]
  23. Yount B., Curtis K. M., Fritz E. A., Hensley L. E., Jahrling P. B., Prentice E., Denison M. R., Geisbert T. W., Baric R. S. 2003; Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 100:12995–13000 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80111-0
Loading
/content/journal/jgv/10.1099/vir.0.80111-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed