1887

Abstract

Foot-and-mouth disease virus (FMDV) and other picornaviruses initiate translation of their positive-strand RNA genomes at the highly structured internal ribosome entry site (IRES), which mediates ribosome recruitment to an internal site of the virus RNA. This process is facilitated by eukaryotic translation initiation factors (eIFs), such as eIF4G and eIF4B. In the eIF4G-binding site, a characteristic, discontinuous sequence element is highly conserved within the cardio- and aphthovirus subgroup (including FMDV) of the picornaviruses. This conserved element was mutated in order to investigate its primary sequence and secondary structure requirements for IRES function. Both binding of eIF4G to the IRES and IRES-directed translation are seriously impaired by mutations in two unpaired dinucleotide stretches that are exposed from the double-stranded (ds)RNA. In the base-paired regions of the conserved element, maintenance of the double-stranded secondary structure is essential, whilst in some cases, the primary sequence within the dsRNA regions is also important for IRES function. Extra eIF4F added to the translation reaction does not restore full IRES activity or eIF4G binding, indicating that disturbances in the structure of this conserved element cannot be overcome by increased initiation factor concentrations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80106-0
2004-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852555.html?itemId=/content/journal/jgv/10.1099/vir.0.80106-0&mimeType=html&fmt=ahah

References

  1. Beck, E., Forss, S., Strebel, K., Cattaneo, R. & Feil, G. ( 1983; ). Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Res 11, 7873–7885.[CrossRef]
    [Google Scholar]
  2. Belsham, G. J. ( 1992; ). Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J 11, 1105–1110.
    [Google Scholar]
  3. Blyn, L. B., Towner, J. S., Semler, B. L. & Ehrenfeld, E. ( 1997; ). Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol 71, 6243–6246.
    [Google Scholar]
  4. Boussadia, O., Niepmann, M., Créancier, L., Prats, A.-C., Dautry, F. & Jacquemin-Sablon, H. ( 2003; ). Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol 77, 3353–3359.[CrossRef]
    [Google Scholar]
  5. Brown, F. ( 1999; ). Control of foot-and-mouth disease by vaccination. Dev Biol Stand 100, 131–135.
    [Google Scholar]
  6. Carrasco, L. & Smith, A. E. ( 1976; ). Sodium ions and the shut-off of host cell protein synthesis by picornaviruses. Nature 264, 807–809.[CrossRef]
    [Google Scholar]
  7. Clark, A. T., Robertson, M. E. M., Conn, G. L. & Belsham, G. J. ( 2003; ). Conserved nucleotides within the J domain of the encephalomyocarditis virus internal ribosome entry site are required for activity and for interaction with eIF4G. J Virol 77, 12441–12449.[CrossRef]
    [Google Scholar]
  8. Devaney, M. A., Vakharia, V. N., Lloyd, R. E., Ehrenfeld, E. & Grubman, M. J. ( 1988; ). Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol 62, 4407–4409.
    [Google Scholar]
  9. Ehrenfeld, E. & Teterina, N. L. ( 2002; ). Initiation of translation of picornavirus RNAs: structure and function of the internal ribosome entry site. In Molecular Biology of Picornaviruses, pp. 159–170. Edited by B. L. Semler & E. Wimmer. Washington, DC: American Society for Microbiology.
  10. Evdokimova, V. M. & Ovchinnikov, L. P. ( 1999; ). Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. Int J Biochem Cell Biol 31, 139–149.[CrossRef]
    [Google Scholar]
  11. Ferguson, N. M., Donnelly, C. A. & Anderson, R. M. ( 2001; ). The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292, 1155–1160.[CrossRef]
    [Google Scholar]
  12. Grifo, J. A., Tahara, S. M., Morgan, M. A., Shatkin, A. J. & Merrick, W. C. ( 1983; ). New initiation factor activity required for globin mRNA translation. J Biol Chem 258, 5804–5810.
    [Google Scholar]
  13. Hentze, M. W. ( 1997; ). eIF4G: a multipurpose ribosome adapter? Science 275, 500–501.[CrossRef]
    [Google Scholar]
  14. Hunt, S. L., Hsuan, J. J., Totty, N. & Jackson, R. J. ( 1999; ). unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev 13, 437–448.[CrossRef]
    [Google Scholar]
  15. Jackson, R. J. ( 2002; ). Proteins involved in the function of picornavirus internal ribosomal entry sites. In Molecular Biology of Picornaviruses, pp. 171–186. Edited by B. L. Semler & E. Wimmer. Washington, DC: American Society for Microbiology.
  16. Jackson, R. J. & Kaminski, A. ( 1995; ). Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000.
    [Google Scholar]
  17. Kaminski, A. & Jackson, R. J. ( 1998; ). The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 4, 626–638.[CrossRef]
    [Google Scholar]
  18. Kaminski, A., Hunt, S. L., Patton, J. G. & Jackson, R. J. ( 1995; ). Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA 1, 924–938.
    [Google Scholar]
  19. Kolupaeva, V. G., Hellen, C. U. T. & Shatsky, I. N. ( 1996; ). Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. RNA 2, 1199–1212.
    [Google Scholar]
  20. Kolupaeva, V. G., Pestova, T. V., Hellen, C. U. T. & Shatsky, I. N. ( 1998; ). Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem 273, 18599–18604.[CrossRef]
    [Google Scholar]
  21. Kolupaeva, V. G., Lomakin, I. B., Pestova, T. V. & Hellen, C. U. T. ( 2003; ). Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Mol Cell Biol 23, 687–698.[CrossRef]
    [Google Scholar]
  22. Korneeva, N. L., Lamphear, B. J., Hennigan, F. L. C. & Rhoads, R. E. ( 2000; ). Mutually cooperative binding of eukaryotic translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1. J Biol Chem 275, 41369–41376.[CrossRef]
    [Google Scholar]
  23. Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. ( 1995; ). Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem 270, 21975–21983.[CrossRef]
    [Google Scholar]
  24. Leontis, N. B., Stombaugh, J. & Westhof, E. ( 2002; ). The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30, 3497–3531.[CrossRef]
    [Google Scholar]
  25. López de Quinto, S. & Martínez-Salas, E. ( 2000; ). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6, 1380–1392.[CrossRef]
    [Google Scholar]
  26. López de Quinto, S., Lafuente, E. & Martínez-Salas, E. ( 2001; ). IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7, 1213–1226.[CrossRef]
    [Google Scholar]
  27. Luz, N. & Beck, E. ( 1991; ). Interaction of a cellular 57-kilodalton protein with the internal translation initiation site of foot-and-mouth disease virus. J Virol 65, 6486–6494.
    [Google Scholar]
  28. Meerovitch, K., Svitkin, Y. V., Lee, H. S., Lejbkowicz, F., Kenan, D. J., Chan, E. K. L., Agol, V. I., Keene, J. D. & Sonenberg, N. ( 1993; ). La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67, 3798–3807.
    [Google Scholar]
  29. Meyer, K., Petersen, A., Niepmann, M. & Beck, E. ( 1995; ). Interaction of eukaryotic initiation factor eIF-4B with a picornavirus internal translation initiation site. J Virol 69, 2819–2824.
    [Google Scholar]
  30. Niepmann, M. ( 1996; ). Porcine polypyrimidine tract-binding protein stimulates translation initiation at the internal ribosome entry site of foot-and-mouth-disease virus. FEBS Lett 388, 39–42.[CrossRef]
    [Google Scholar]
  31. Niepmann, M. ( 1999; ). Internal initiation of translation of picornaviruses, hepatitis C virus and pestiviruses. Recent Res Devel Virol 1, 229–250.
    [Google Scholar]
  32. Niepmann, M. ( 2003; ). Effects of potassium and chloride on ribosome association with the RNA of foot-and-mouth disease virus. Virus Res 93, 71–78.[CrossRef]
    [Google Scholar]
  33. Niepmann, M., Petersen, A., Meyer, K. & Beck, E. ( 1997; ). Functional involvement of polypyrimidine tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth disease virus. J Virol 71, 8330–8339.
    [Google Scholar]
  34. Ochs, K., Rust, R. C. & Niepmann, M. ( 1999; ). Translation initiation factor eIF4B interacts with a picornavirus internal ribosome entry site in both 48S and 80S initiation complexes independently of initiator AUG location. J Virol 73, 7505–7514.
    [Google Scholar]
  35. Ochs, K., Saleh, L., Bassili, G., Sonntag, V. H., Zeller, A. & Niepmann, M. ( 2002; ). Interaction of translation initiation factor eIF4B with the poliovirus internal ribosome entry site. J Virol 76, 2113–2122.[CrossRef]
    [Google Scholar]
  36. Ochs, K., Zeller, A., Saleh, L., Bassili, G., Song, Y., Sonntag, A. & Niepmann, M. ( 2003; ). Impaired binding of standard initiation factors mediates poliovirus translation attenuation. J Virol 77, 115–122.[CrossRef]
    [Google Scholar]
  37. Paul, A. V. ( 2002; ). Possible unifying mechanism of picornavirus genome replication. In Molecular Biology of Picornaviruses, pp. 227–246. Edited by B. L. Semler & E. Wimmer. Washington, DC: American Society for Microbiology.
  38. Pestova, T. V., Hellen, C. U. T. & Shatsky, I. N. ( 1996a; ). Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 16, 6859–6869.
    [Google Scholar]
  39. Pestova, T. V., Shatsky, I. N. & Hellen, C. U. T. ( 1996b; ). Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol 16, 6870–6878.
    [Google Scholar]
  40. Pilipenko, E. V., Blinov, V. M., Chernov, B. K., Dmitrieva, T. M. & Agol, V. I. ( 1989; ). Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res 17, 5701–5711.[CrossRef]
    [Google Scholar]
  41. Pilipenko, E. V., Pestova, T. V., Kolupaeva, V. G., Khitrina, E. V., Poperechnaya, A. N., Agol, V. I. & Hellen, C. U. ( 2000; ). A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14, 2028–2045.
    [Google Scholar]
  42. Prevot, D., Darlix, J. L. & Ohlmann, T. ( 2003; ). Conducting the initiation of protein synthesis: the role of eIF4G. Biol Cell 95, 141–156.[CrossRef]
    [Google Scholar]
  43. Rozen, F., Edery, I., Meerovitch, K., Dever, T. E., Merrick, W. C. & Sonenberg, N. ( 1990; ). Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 10, 1134–1144.
    [Google Scholar]
  44. Rust, R. C., Ochs, K., Meyer, K., Beck, E. & Niepmann, M. ( 1999; ). Interaction of eukaryotic initiation factor eIF4B with the internal ribosome entry site of foot-and-mouth disease virus is independent of the polypyrimidine tract-binding protein. J Virol 73, 6111–6113.
    [Google Scholar]
  45. Saleh, L., Rust, R. C., Füllkrug, R., Beck, E., Bassili, G., Ochs, K. & Niepmann, M. ( 2001; ). Functional interaction of translation initiation factor eIF4G with the foot-and-mouth disease virus internal ribosome entry site. J Gen Virol 82, 757–763.
    [Google Scholar]
  46. Sangar, D. V., Newton, S. E., Rowlands, D. J. & Clarke, B. E. ( 1987; ). All foot and mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Res 15, 3305–3315.[CrossRef]
    [Google Scholar]
  47. Scheper, G. C., Voorma, H. O. & Thomas, A. A. M. ( 1992; ). Eukaryotic initiation factors-4E and -4F stimulate 5′ cap-dependent as well as internal initiation of protein synthesis. J Biol Chem 267, 7269–7274.
    [Google Scholar]
  48. Stanway, G., Hovi, T., Knowles, N. J. & Hyypiä, T. ( 2002; ). Molecular and biological basis of picornavirus taxonomy. In Molecular Biology of Picornaviruses, pp. 17–26. Edited by B. L. Semler & E. Wimmer. Washington, DC: American Society for Microbiology.
  49. Stassinopoulos, I. A. & Belsham, G. J. ( 2001; ). A novel protein–RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. RNA 7, 114–122.[CrossRef]
    [Google Scholar]
  50. Stone, R. ( 2002; ). Foot-and-mouth disease: report urges U.K. to vaccinate herds. Science 297, 319–321.
    [Google Scholar]
  51. Weber, L. A., Hickey, E. D., Maroney, P. A. & Baglioni, C. ( 1977; ). Inhibition of protein synthesis by Cl. J Biol Chem 252, 4007–4010.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80106-0
Loading
/content/journal/jgv/10.1099/vir.0.80106-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error