1887

Abstract

Feline immunodeficiency virus (FIV) infection in cats is associated with an increase of feline CD (fCD)8 and fCD8 cells in peripheral blood. To investigate these cells in more detail, an anti-fCD3 mAb, termed NZM1, was generated, which recognizes the extracellular epitope of the fCD3 molecule. The anti-fCD3 mAb proved to be more suitable for identifying feline T cells than the anti-fCD5 one, which has been used as a pan-T-cell reagent in cats, because of the presence of fCD5fCD3 cells among lymphocytes. Although the fCD8 and fCD8 cells in the FIV-infected cats expressed fCD3, a subset of fCD8 cells expressed fCD3 antigen at a lower level than the T cells whose phenotype was fCD4, or fCD8 . The lower expression of fCD3 may be associated with the immune status of fCD8 T cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80102-0
2004-09-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852585.html?itemId=/content/journal/jgv/10.1099/vir.0.80102-0&mimeType=html&fmt=ahah

References

  1. Ackley, C. D. & Cooper, M. D. ( 1992; ). Characterization of a feline T-cell-specific monoclonal antibody reactive with a CD5-like molecule. Am J Vet Res 53, 466–471.
    [Google Scholar]
  2. Ackley, C. D., Hoover, E. A. & Cooper, M. D. ( 1990; ). Identification of a CD4 homologue in the cat. Tissue Antigens 35, 92–98.[CrossRef]
    [Google Scholar]
  3. Ashwell, J. D. & Klausner, R. D. ( 1990; ). Genetic and mutational analysis of the T-cell antigen receptor. Annu Rev Immunol 8, 139–167.[CrossRef]
    [Google Scholar]
  4. Bass, H. Z., Nishanian, P., Hardy, W. D., Mitsuyasu, R. T., Esmail, E., Cumberland, W. & Fahey, J. L. ( 1992; ). Immune changes in HIV-1 infection: significant correlations and differences in serum markers and lymphoid phenotypic antigens. Clin Immunol Immunopathol 64, 63–70.[CrossRef]
    [Google Scholar]
  5. Bucci, J. G., Gebhard, D. H., Childers, T. A., English, R. V., Tompkins, M. B. & Tompkins, W. A. F. ( 1998; ). The CD8+ cell phenotype mediating antiviral activity in feline immunodeficiency virus-infected cats is characterized by reduced surface expression of the CD8 β chain. J Infect Dis 178, 968–977.[CrossRef]
    [Google Scholar]
  6. Caligaris-Cappio, F., Gobbi, M., Bofill, M. & Janossy, G. ( 1982; ). Infrequent normal B lymphocytes express features of B-chronic lymphocytic leukemia. J Exp Med 155, 623–628.[CrossRef]
    [Google Scholar]
  7. Clevers, H., Alarcon, B., Wileman, T. & Terhorst, C. ( 1988; ). The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol 6, 629–662.[CrossRef]
    [Google Scholar]
  8. Flynn, J. N., Dunham, S., Mueller, A., Cannon, C. & Jarrett, O. ( 2002; ). Involvement of cytolytic and non-cytolytic T cells in the control of feline immunodeficiency virus infection. Vet Immunol Immunopathol 85, 159–170.[CrossRef]
    [Google Scholar]
  9. Gebhard, D. H., Dow, J. L., Childers, T. A., Alvelo, J. I., Tompkins, M. B. & Tompkins, W. A. F. ( 1999; ). Progressive expansion of an L-selectin-negative CD8 cell with anti-feline immunodeficiency virus (FIV) suppressor function in the circulation of FIV-infected cats. J Infect Dis 180, 1503–1513.[CrossRef]
    [Google Scholar]
  10. Geertsma, M. F., van Wengen-Stevenhagen, A., van Dam, E. M., Risberg, K., Kroon, F. P., Groeneveld, P. H. P. & Nibbering, P. H. ( 1999; ). Decreased expression of ζ molecules by T lymphocytes is correlated with disease progression in human immunodeficiency virus-infected persons. J Infect Dis 180, 649–658.[CrossRef]
    [Google Scholar]
  11. Ginaldi, L., De Martinis, M., D'Ostilio, A., Di Gennaro, A., Marini, L. & Quaglino, D. ( 1997; ). Altered lymphocyte antigen expressions in HIV infection: a study by quantitative flow cytometry. Am J Clin Pathol 108, 585–592.
    [Google Scholar]
  12. Hohdatsu, T., Yamazaki, A., Yamada, M., Kusuhara, H., Kaneshima, T. & Koyama, H. ( 2003; ). Ability of CD8+ T cell anti-feline immunodeficiency virus activity correlated with peripheral CD4+ T cell counts and plasma viremia. Microbiol Immunol 47, 765–773.[CrossRef]
    [Google Scholar]
  13. Joling, P., Broekhuizen, R., de Weger, R. A., Rottier, P. J. M. & Egberink, H. ( 1996; ). Immunohistochemical demonstration of cellular antigens of the cat defined by anti-human antibodies. Vet Immunol Immunopathol 53, 115–127.[CrossRef]
    [Google Scholar]
  14. Klotz, F. W. & Cooper, M. D. ( 1986; ). A feline thymocyte antigen defined by a monoclonal antibody (FT2) identifies a subpopulation of non-helper cells capable of specific cytotoxicity. J Immunol 136, 2510–2516.
    [Google Scholar]
  15. Konno, A., Okada, K., Mizuno, K. & 9 other authors ( 2002; ). CD8αα memory effector T cells descend directly from clonally expanded CD8α + β high TCRαβ T cells in vivo. Blood 100, 4090–4097.[CrossRef]
    [Google Scholar]
  16. Leo, O., Foo, M., Sachs, D. H., Samelson, L. E. & Bluestone, J. A. ( 1987; ). Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A 84, 1374–1378.[CrossRef]
    [Google Scholar]
  17. Manohar, V., Brown, E., Leiserson, W. M. & Chused, T. M. ( 1982; ). Expression of Lyt-1 by a subset of B lymphocytes. J Immunol 129, 532–538.
    [Google Scholar]
  18. Miyazawa, T. ( 2002; ). Infections of feline leukemia virus and feline immunodeficiency virus. Front Biosci 7, 504–518.[CrossRef]
    [Google Scholar]
  19. Miyazawa, T., Furuya, T., Itagaki, S., Tohya, Y., Nakano, K., Takahashi, E. & Mikami, T. ( 1989a; ). Preliminary comparisons of the biological properties of two strains of feline immunodeficiency virus (FIV) isolated in Japan with FIV Petaluma strain isolated in the United States. Arch Virol 108, 59–68.[CrossRef]
    [Google Scholar]
  20. Miyazawa, T., Furuya, T., Itagaki, S., Tohya, Y., Takahashi, E. & Mikami, T. ( 1989b; ). Establishment of a feline T-lymphoblastoid cell line highly sensitive for replication of feline immunodeficiency virus. Arch Virol 108, 131–135.[CrossRef]
    [Google Scholar]
  21. Moebius, U., Kober, G., Griscelli, A. L., Hercend, T. & Meuer, S. C. ( 1991; ). Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur J Immunol 21, 1793–1800.[CrossRef]
    [Google Scholar]
  22. Mosmann, T. ( 1983; ). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55–63.[CrossRef]
    [Google Scholar]
  23. Nishimura, Y., Miyazawa, T., Ikeda, Y., Izumiya, Y., Nakamura, K., Cai, J.-S., Sato, E., Kohmoto, M. & Mikami, T. ( 1998; ). Molecular cloning and expression of feline CD3ε. Vet Immunol Immunopathol 65, 43–50.[CrossRef]
    [Google Scholar]
  24. Raman, C. & Knight, K. L. ( 1992; ). CD5+ B cells predominate in peripheral tissues of rabbit. J Immunol 149, 3858–3864.
    [Google Scholar]
  25. Reinherz, E. L., Kung, P., Goldstein, G. & Schlossman, S. F. ( 1979; ). A monoclonal antibody with selective reactivity with functionally mature human thymocytes and all peripheral human T cells. J Immunol 123, 1312–1317.
    [Google Scholar]
  26. Schmitz, J. E., Forman, M. A., Lifton, M. A., Concepción, O., Reimann, K. A., Jr, Crumpacker, C. S., Daley, J. F., Gelman, R. S. & Letvin, N. L. ( 1998; ). Expression of the CD8αβ-heterodimer on CD8+ T lymphocytes in peripheral blood lymphocytes of human immunodeficiency virus and human immunodeficiency virus+ individuals. Blood 92, 198–206.
    [Google Scholar]
  27. Shimojima, M., Morikawa, S., Maeda, K., Tohya, Y., Miyazawa, T. & Mikami, T. ( 1997; ). Generation of monoclonal antibodies against a feline CD antigen (CD4) expressed by a recombinant baculovirus. J Vet Med Sci 59, 467–469.[CrossRef]
    [Google Scholar]
  28. Shimojima, M., Miyazawa, T., Kohmoto, M., Ikeda, Y., Nishimura, Y., Maeda, K., Tohya, Y. & Mikami, T. ( 1998a; ). Expansion of CD8α + β cells in cats infected with feline immunodeficiency virus. J Gen Virol 79, 91–94.
    [Google Scholar]
  29. Shimojima, M., Pecoraro, M. R., Maeda, K., Tohya, Y., Miyazawa, T. & Mikami, T. ( 1998b; ). Characterization of anti-feline CD8 monoclonal antibodies. Vet Immunol Immunopathol 61, 17–23.[CrossRef]
    [Google Scholar]
  30. Shimojima, M., Nishimura, Y., Miyazawa, T., Tohya, Y. & Akashi, H. ( 2003; ). Phenotypic changes in CD8+ peripheral blood lymphocytes in cats infected with feline immunodeficiency virus. Microbes Infect 5, 1171–1176.[CrossRef]
    [Google Scholar]
  31. Shimojima, M., Nishimura, Y., Miyazawa, T., Tohya, Y. & Akashi, H. ( 2004; ). T cell subpopulations mediating inhibition of feline immunodeficiency virus replication in mucosally infected cats. Microbes Infect 6, 265–271.[CrossRef]
    [Google Scholar]
  32. Stievano, L., Tosello, V., Marcato, N., Rosato, A., Sebelin, A., Chieco-Bianchi, L. & Amadori, A. ( 2003; ). CD8+ αβ + T cells that lack surface CD5 antigen expression are a major lymphotactin (XCL1) source in peripheral blood lymphocytes. J Immunol 171, 4528–4538.[CrossRef]
    [Google Scholar]
  33. Transy, C., Moingeon, P. E., Marshall, B., Stebbins, C. & Reinherz, E. L. ( 1989; ). Most anti-human CD3 monoclonal antibodies are directed to the CD3 ε subunit. Eur J Immunol 19, 947–950.[CrossRef]
    [Google Scholar]
  34. Trimble, L. A. & Lieberman, J. ( 1998; ). Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3ζ, the signaling chain of the T-cell receptor complex. Blood 91, 585–594.
    [Google Scholar]
  35. Tsoukas, C. D., Landgraf, B., Bentin, J., Valentine, M., Lotz, M., Vaughan, J. H. & Carson, D. A. ( 1985; ). Activation of resting T lymphocytes by anti-CD3 (T3) antibodies in the absence of monocytes. J Immunol 135, 1719–1723.
    [Google Scholar]
  36. Yang, O. O. & Walker, B. D. ( 1997; ). CD8+ cells in human immunodeficiency virus type I pathogenesis: cytolytic and noncytolytic inhibition of viral replication. Adv Immunol 66, 273–311.
    [Google Scholar]
  37. Yang, H., Oura, C. A. L., Kirkham, P. A. & Parkhouse, R. M. E. ( 1996; ). Preparation of monoclonal anti-porcine CD3 antibodies and preliminary characterization of porcine T lymphocytes. Immunology 88, 577–585.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80102-0
Loading
/content/journal/jgv/10.1099/vir.0.80102-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error