1887

Abstract

There is a need for improvement of the commonly used adenovirus vectors based on serotype 5. This study was performed on three adenovirus serotypes with a CAR-binding motif (Ad4p, Ad5p and Ad17p) and three non-CAR-binding serotypes (Ad11p, Ad16p and Ad21p). The capacity of these alternative adenovirus vector candidates to deliver DNA into low-passage glioma cell lines from seven different donors was evaluated. The non-CAR-binding serotype Ad16p was the most efficient serotype with regard to import of its DNA, as well as initiation of hexon protein expression. Ad16p established hexon expression in 60–80 % of the cell population in gliomas from all donors tested. The other non-CAR-binding serotypes, Ad11p and Ad21p, showed hexon expression in 25–60 and 40–80 % of cells, respectively. The corresponding figure for the best CAR-binding serotype, Ad5p, was only 25–65 %, indicating greater variability between cells from different donors than serotype Ad16p had. The other CAR-binding serotypes, Ad4p and Ad17p, were refractory to some of the gliomas, giving a maximum of only 45 and 40 % hexon expression, respectively, in the most permissive cells. Interestingly, the transduction capacity of the CAR-binding serotypes was not correlated to the level of CAR expression on the cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80084-0
2004-09-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852627.html?itemId=/content/journal/jgv/10.1099/vir.0.80084-0&mimeType=html&fmt=ahah

References

  1. Albinsson, B. & Kidd, A. H. ( 1999; ). Adenovirus type 41 lacks an RGD α v-integrin binding motif on the penton base and undergoes delayed uptake in A549 cells. Virus Res 64, 125–136.[CrossRef]
    [Google Scholar]
  2. Arnberg, N., Edlund, K., Kidd, A. H. & Wadell, G. ( 2000a; ). Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74, 42–48.[CrossRef]
    [Google Scholar]
  3. Arnberg, N., Kidd, A. H., Edlund, K., Olfat, F. & Wadell, G. ( 2000b; ). Initial interactions of subgenus D adenoviruses with A549 cellular receptors: sialic acid versus α v integrins. J Virol 74, 7691–7693.[CrossRef]
    [Google Scholar]
  4. Asaoka, K., Tada, M., Sawamura, Y., Ikeda, J. & Abe, H. ( 2000; ). Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the coxsackievirus and adenovirus receptor. J Neurosurg 92, 1002–1008.[CrossRef]
    [Google Scholar]
  5. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L. & Finberg, R. W. ( 1997; ). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.[CrossRef]
    [Google Scholar]
  6. Bruning, A., Kohler, T., Quist, S., Wang-Gohrke, S., Moebus, V. J., Kreienberg, R. & Runnebaum, I. B. ( 2001; ). Adenoviral transduction efficiency of ovarian cancer cells can be limited by loss of integrin β3 subunit expression and increased by reconstitution of integrin αvβ3. Hum Gene Ther 12, 391–399.[CrossRef]
    [Google Scholar]
  7. Buchholz, C. J., Gerlier, D., Hu, A., Cathomen, T., Liszewski, M. K., Atkinson, J. P. & Cattaneo, R. ( 1996; ). Selective expression of a subset of measles virus receptor-competent CD46 isoforms in human brain. Virology 217, 349–355.[CrossRef]
    [Google Scholar]
  8. Carson, S. D. ( 2001; ). Receptor for the group B coxsackieviruses and adenoviruses: CAR. Rev Med Virol 11, 219–226.[CrossRef]
    [Google Scholar]
  9. Chillon, M., Bosch, A., Zabner, J., Law, L., Armentano, D., Welsh, M. J. & Davidson, B. L. ( 1999; ). Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J Virol 73, 2537–2540.
    [Google Scholar]
  10. Chirmule, N., Propert, K., Magosin, S., Qian, Y., Qian, R. & Wilson, J. ( 1999; ). Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 6, 1574–1583.[CrossRef]
    [Google Scholar]
  11. Cichon, G., Boeckh-Herwig, S., Schmidt, H. H., Wehnes, E., Muller, T., Pring-Akerblom, P. & Burger, R. ( 2001; ). Complement activation by recombinant adenoviruses. Gene Ther 8, 1794–1800.[CrossRef]
    [Google Scholar]
  12. Cohen, C. J., Shieh, J. T., Pickles, R. J., Okegawa, T., Hsieh, J. T. & Bergelson, J. M. ( 2001; ). The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98, 15191–15196.[CrossRef]
    [Google Scholar]
  13. Dechecchi, M. C., Melotti, P., Bonizzato, A., Santacatterina, M., Chilosi, M. & Cabrini, G. ( 2001; ). Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 75, 8772–8780.[CrossRef]
    [Google Scholar]
  14. Fishelson, Z., Donin, N., Zell, S., Schultz, S. & Kirschfink, M. ( 2003; ). Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 40, 109–123.[CrossRef]
    [Google Scholar]
  15. Fisher, K. D., Stallwood, Y., Green, N. K., Ulbrich, K., Mautner, V. & Seymour, L. W. ( 2001; ). Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 8, 341–348.[CrossRef]
    [Google Scholar]
  16. Fox, J. P. & Hall, C. E. ( 1980; ). In Viruses in Families, p. 318. Littleton, MA: PSG Publishing.
  17. Fuxe, J., Liu, L., Malin, S., Philipson, L., Collins, V. P. & Pettersson, R. F. ( 2003; ). Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer 103, 723–729.[CrossRef]
    [Google Scholar]
  18. Gaggar, A., Shayakhmetov, D. M. & Lieber, A. ( 2003; ). CD46 is a cellular receptor for group B adenoviruses. Nat Med 9, 1408–1412.[CrossRef]
    [Google Scholar]
  19. Greber, U. F., Suomalainen, M., Stidwill, R. P., Boucke, K., Ebersold, M. W. & Helenius, A. ( 1997; ). The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 16, 5998–6007.[CrossRef]
    [Google Scholar]
  20. Hong, S. S., Karayan, L., Tournier, J., Curiel, D. T. & Boulanger, P. A. ( 1997; ). Adenovirus type 5 fiber knob binds to MHC class I α2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 16, 2294–2306.[CrossRef]
    [Google Scholar]
  21. Ilan, Y., Sauter, B., Chowdhury, N. R. & 7 other authors ( 1998; ). Oral tolerization to adenoviral proteins permits repeated adenovirus-mediated gene therapy in rats with pre-existing immunity to adenoviruses. Hepatology 27, 1368–1376.[CrossRef]
    [Google Scholar]
  22. Kim, M., Sumerel, L. A., Belousova, N., Lyons, G. R., Carey, D. E., Krasnykh, V. & Douglas, J. T. ( 2003; ). The coxsackievirus and adenovirus receptor acts as a tumour suppressor in malignant glioma cells. Br J Cancer 88, 1411–1416.[CrossRef]
    [Google Scholar]
  23. Kremer, E. J., Boutin, S., Chillon, M. & Danos, O. ( 2000; ). Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 74, 505–512.[CrossRef]
    [Google Scholar]
  24. Mack, C. A., Song, W. R., Carpenter, H. & 10 other authors ( 1997; ). Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther 8, 99–109.[CrossRef]
    [Google Scholar]
  25. Magnusson, M. K., Hong, S. S., Henning, P., Boulanger, P. & Lindholm, L. ( 2002; ). Genetic retargeting of adenovirus vectors: functionality of targeting ligands and their influence on virus viability. J Gene Med 4, 356–370.[CrossRef]
    [Google Scholar]
  26. McQuaid, S. & Cosby, S. L. ( 2002; ). An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82, 403–409.[CrossRef]
    [Google Scholar]
  27. Mei, Y. F. ( 1996; ). In The molecular basis for different tropisms in closely related adenoviruses, p. 228. PhD thesis, Umeå University, Umeå, Sweden.
  28. Mei, Y. F., Lindman, K. & Wadell, G. ( 1998; ). Two closely related adenovirus genome types with kidney or respiratory tract tropism differ in their binding to epithelial cells of various origins. Virology 240, 254–266.[CrossRef]
    [Google Scholar]
  29. Miller, C. R., Buchsbaum, D. J., Reynolds, P. N., Douglas, J. T., Gillespie, G. Y., Mayo, M. S., Raben, D. & Curiel, D. T. ( 1998; ). Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 58, 5738–5748.
    [Google Scholar]
  30. Morral, N., O'Neal, W., Rice, K. & 12 other authors ( 1999; ). Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A 96, 12816–12821.[CrossRef]
    [Google Scholar]
  31. Nakamura, T., Sato, K. & Hamada, H. ( 2003; ). Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J Virol 77, 2512–2521.[CrossRef]
    [Google Scholar]
  32. Nicklin, S. A., Von Seggern, D. J., Work, L. M., Pek, D. C., Dominiczak, A. F., Nemerow, G. R. & Baker, A. H. ( 2001; ). Ablating adenovirus type 5 fiber-CAR-binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther 4, 534–542.[CrossRef]
    [Google Scholar]
  33. Okegawa, T., Pong, R. C., Li, Y., Bergelson, J. M., Sagalowsky, A. I. & Hsieh, J. T. ( 2001; ). The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res 61, 6592–6600.
    [Google Scholar]
  34. Olive, M., Eisenlohr, L., Flomenberg, N., Hsu, S. & Flomenberg, P. ( 2002; ). The adenovirus capsid protein hexon contains a highly conserved human CD4+ T-cell epitope. Hum Gene Ther 13, 1167–1178.[CrossRef]
    [Google Scholar]
  35. Rahman, A., Tsai, V., Goudreau, A. & 7 other authors ( 2001; ). Specific depletion of human anti-adenovirus antibodies facilitates transduction in an in vivo model for systemic gene therapy. Mol Ther 3, 768–778.[CrossRef]
    [Google Scholar]
  36. Roelvink, P. W., Lizonova, A., Lee, J. G., Li, Y., Bergelson, J. M., Finberg, R. W., Brough, D. E., Kovesdi, I. & Wickham, T. J. ( 1998; ). The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72, 7909–7915.
    [Google Scholar]
  37. Schoggins, J. W., Gall, J. G. & Falck-Pedersen, E. ( 2003; ). Subgroup B and f fiber chimeras eliminate normal adenovirus type 5 vector transduction in vitro and in vivo. J Virol 77, 1039–1048.[CrossRef]
    [Google Scholar]
  38. Segerman, A., Arnberg, N., Erikson, A., Lindman, K. & Wadell, G. ( 2003a; ). There are two different species B adenovirus receptors: sBAR, common to species B1 and B2 adenoviruses, and sB2AR, exclusively used by species B2 adenoviruses. J Virol 77, 1157–1162.[CrossRef]
    [Google Scholar]
  39. Segerman, A., Atkinson, J. P., Marttila, M., Dennerquist, V., Wadell, G. & Arnberg, N. ( 2003b; ). Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 77, 9183–9191.[CrossRef]
    [Google Scholar]
  40. Seshidhar Reddy, P., Ganesh, S., Limbach, M. P., Brann, T., Pinkstaff, A., Kaloss, M., Kaleko, M. & Connelly, S. ( 2003; ). Development of adenovirus serotype 35 as a gene transfer vector. Virology 311, 384–393.[CrossRef]
    [Google Scholar]
  41. Shayakhmetov, D. M., Papayannopoulou, T., Stamatoyannopoulos, G. & Lieber, A. ( 2000; ). Efficient gene transfer into human CD34+ cells by a retargeted adenovirus vector. J Virol 74, 2567–2583.[CrossRef]
    [Google Scholar]
  42. Skog, J., Mei, Y. F. & Wadell, G. ( 2002; ). Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin. J Gen Virol 83, 1299–1309.
    [Google Scholar]
  43. Smith, T. A., White, B. D., Gardner, J. M., Kaleko, M. & McClelland, A. ( 1996; ). Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector. Gene Ther 3, 496–502.
    [Google Scholar]
  44. Soudais, C., Boutin, S., Hong, S. S., Chillon, M., Danos, O., Bergelson, J. M., Boulanger, P. & Kremer, E. J. ( 2000; ). Canine adenovirus type 2 attachment and internalization: coxsackievirus- adenovirus receptor, alternative receptors, and an RGD-independent pathway. J Virol 74, 10639–10649.[CrossRef]
    [Google Scholar]
  45. Thomas, C. E., Schiedner, G., Kochanek, S., Castro, M. G. & Lowenstein, P. R. ( 2000; ). Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci U S A 97, 7482–7487.[CrossRef]
    [Google Scholar]
  46. van Oostrum, J. & Burnett, R. M. ( 1985; ). Molecular composition of the adenovirus type 2 virion. J Virol 56, 439–448.
    [Google Scholar]
  47. Vogels, R., Zuijdgeest, D., van Rijnsoever, R. & 20 other authors ( 2003; ). Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 77, 8263–8271.[CrossRef]
    [Google Scholar]
  48. Wadell, G. ( 1984; ). Molecular epidemiology of human adenoviruses. Curr Top Microbiol Immunol 110, 191–220.
    [Google Scholar]
  49. Wang, K., Guan, T., Cheresh, D. A. & Nemerow, G. R. ( 2000; ). Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin β5. J Virol 74, 2731–2739.[CrossRef]
    [Google Scholar]
  50. Wickham, T. J., Mathias, P., Cheresh, D. A. & Nemerow, G. R. ( 1993; ). Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319.[CrossRef]
    [Google Scholar]
  51. Wu, E., Pache, L., Von Seggern, D. J., Mullen, T. M., Mikyas, Y., Stewart, P. L. & Nemerow, G. R. ( 2003; ). Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 77, 7225–7235.[CrossRef]
    [Google Scholar]
  52. Youil, R., Toner, T. J., Su, Q., Chen, M., Tang, A., Bett, A. J. & Casimiro, D. ( 2002; ). Hexon gene switch strategy for the generation of chimeric recombinant adenovirus. Hum Gene Ther 13, 311–320.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80084-0
Loading
/content/journal/jgv/10.1099/vir.0.80084-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error