Identification of the homotypic interaction domain of the core protein of dengue virus type 2 Free

Abstract

Dengue virus causes dengue haemorrhagic fever or dengue shock syndrome with a high mortality rate. The genome of dengue virus is a positive-sense, single-stranded RNA encoding three structural and seven non-structural proteins. The core protein is one of the three structural proteins and is the building block of the nucleocapsid of dengue virus. The core protein of dengue virus type 2 (DEN2) is composed of 100 aa with four -helix domains. An internal hydrophobic domain located at aa 44–60 was identified. The DEN2 core protein was shown to form homodimers. Deletion of aa 1–36 or 73–100 decreased but did not completely abolish the core-to-core homotypic interaction, whereas deletion of a portion (aa 44–60) within aa 37–72 completely abolished the ability of the DEN2 core proteins to interact with each other. A recombinant DEN2 core protein corresponding to aa 37–72 was able to undergo homotypic interaction and bound to a native DEN2 core protein. The results of this study indicated that the homotypic interaction domain of the DEN2 core protein is located at aa 37–72 and that the internal hydrophobic domain located at aa 44–60 plays a pivotal role in core-to-core homotypic interaction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80067-0
2004-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/8/vir852307.html?itemId=/content/journal/jgv/10.1099/vir.0.80067-0&mimeType=html&fmt=ahah

References

  1. Barrett A. D. 1997; Japanese encephalitis and dengue vaccines. Biologicals 25:27–34 [CrossRef]
    [Google Scholar]
  2. Bhamarapravati N., Sutee Y. 2000; Live attenuated tetravalent dengue vaccine. Vaccine 18 (Suppl. 2):44–47
    [Google Scholar]
  3. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688 [CrossRef]
    [Google Scholar]
  4. Chuang C. H., Hsu S. C., Hsu C. L., Hsu T. C., Syu W. J. 2001; Construction of a tagging system for subcellular localization of proteins encoded by open reading frames. J Biomed Sci 8:170–175 [CrossRef]
    [Google Scholar]
  5. Fan Z., Yang Q. R., Twu J. S., Sherker A. H. 1999; Specific in vitro association between the hepatitis C viral genome and core protein. J Med Virol 59:131–134 [CrossRef]
    [Google Scholar]
  6. Gubler D. J., Clark G. G. 1995; Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1:55–57 [CrossRef]
    [Google Scholar]
  7. Hammon W. M., Rudnick A., Slather G. E. 1960; Viruses associated with epidemic haemorrhagic fevers of the Philippines and Thailand. Science 131:1102–1103 [CrossRef]
    [Google Scholar]
  8. Hsu S. C., Lin H. P., Wu J. C., Ko K. L., Sheen I. J., Yan B. S., Chou C. K., Syu W. J. 2000; Characterization of a strain-specific monoclonal antibody to hepatitis delta virus antigen. J Virol Methods 87:53–62 [CrossRef]
    [Google Scholar]
  9. Jones C. T., Ma L., Burgner J. W., Groesch T. D., Post C. B., Kuhn R. J. 2003; Flavivirus capsid is a dimeric alpha-helical protein. J Virol 77:7143–7149 [CrossRef]
    [Google Scholar]
  10. Kanesa-thasan N., Sun W., Kim-Ahn G. 11 other authors 2001; Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. Vaccine 19:3179–3188 [CrossRef]
    [Google Scholar]
  11. Khromykh A. A., Westaway E. G. 1996; RNA binding properties of core protein of the flavivirus Kunjin. Arch Virol 141:685–699 [CrossRef]
    [Google Scholar]
  12. Kofler R. M., Heinz F. X., Mandl C. W. 2002; Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. J Virol 76:3534–3543 [CrossRef]
    [Google Scholar]
  13. Kurane I., Ennis F. E. 1992; Immunity and immunopathology in dengue virus infections. Semin Immunol 4:121–127
    [Google Scholar]
  14. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  15. Lam S. K. 1993; Rapid dengue diagnosis and interpretation. Malays J Pathol 15:9–12
    [Google Scholar]
  16. Lei H. Y., Yeh T. M., Liu H. S., Lin Y. S., Chen S. H., Liu C. C. 2001; Immunopathogenesis of dengue virus infection. J Biomed Sci 8:377–388 [CrossRef]
    [Google Scholar]
  17. Lo S. Y., Selby M. J., Ou J. H. 1996; Interaction between hepatitis C virus core protein and E1 envelope protein. J Virol 70:5177–5182
    [Google Scholar]
  18. Lopez S., Yao J. S., Kuhn R. J., Strauss E. G., Strauss J. H. 1994; Nucleocapsid–glycoprotein interactions required for assembly of alphaviruses. J Virol 68:1316–1323
    [Google Scholar]
  19. Ma L., Jones C. T., Groesch T. D., Kuhn R. J., Post C. B. 2004; Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A 101:3414–3419 [CrossRef]
    [Google Scholar]
  20. Markoff L., Falgout B., Chang A. 1997; A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233:105–117 [CrossRef]
    [Google Scholar]
  21. Matsumoto M., Hwang S. B., Jeng K. S., Zhu N., Lai M. M. 1996; Homotypic interaction and multimerization of hepatitis C virus core protein. Virology 218:43–51 [CrossRef]
    [Google Scholar]
  22. Nolandt O., Kern V., Muller H., Pfaff E., Theilmann L., Welker R., Krausslich H. G. 1997; Analysis of hepatitis C virus core protein interaction domains. J Gen Virol 78:1331–1340
    [Google Scholar]
  23. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733 [CrossRef]
    [Google Scholar]
  24. Robertson S. E., Mayans M. V., El-Husseiny A., Clemens J. D., Ivanoff B. 2001; The WHO Vaccine Trial Registry. Vaccine 20:31–41 [CrossRef]
    [Google Scholar]
  25. Rothman A. L., Ennis F. A. 1999; Immunopathogenesis of Dengue hemorrhagic fever. Virology 257:1–6 [CrossRef]
    [Google Scholar]
  26. Shimoike T., Mimori S., Tani H., Matsuura Y., Miyamura T. 1999; Interaction of hepatitis C virus core protein with viral sense RNA and suppression of its translation. J Virol 73:9718–9725
    [Google Scholar]
  27. Tanaka Y., Shimoike T., Ishii K., Suzuki R., Suzuki T., Ushijima H., Matsuura Y., Miyamura T. 2000; Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5′ untranslated region of the viral genome. Virology 270:229–236 [CrossRef]
    [Google Scholar]
  28. Wang S. H., Syu W. J., Huang K. J., Lei H. Y., Yao C. W., King C. C., Hu S. T. 2002; Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus. J Gen Virol 83:3093–3102
    [Google Scholar]
  29. Westaway E. G., Brinton M. A., Gaimamovich S. 7 other authors 1985; Flaviviridae . Intervirology24183–192 [CrossRef]
    [Google Scholar]
  30. WHO 2000; Dengue/dengue haemorrhagic fever: situation in 2000. Wkly Epidemiol Rec 75:193–196
    [Google Scholar]
  31. Yan B. S., Tam M. H., Syu W. J. 1998; Self-association of the C-terminal domain of the hepatitis-C virus core protein. Eur J Biochem 258:100–106 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80067-0
Loading
/content/journal/jgv/10.1099/vir.0.80067-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed