1887

Abstract

A previously unknown coronavirus (CoV) is the aetiological agent causing severe acute respiratory syndrome (SARS), for which an effective antiviral treatment is urgently needed. To enable the rapid and biosafe identification of coronavirus replicase inhibitors, we have generated a non-cytopathic, selectable replicon RNA (based on human CoV 229E) that can be stably maintained in eukaryotic cells. Most importantly, the replicon RNA mediates reporter gene expression as a marker for coronavirus replication. We have used a replicon RNA-containing cell line to test the inhibitory effect of several compounds that are currently being assessed for SARS treatment. Amongst those, interferon- displayed the strongest inhibitory activity. Our results demonstrate that coronavirus replicon cell lines provide a versatile and safe assay for the identification of coronavirus replicase inhibitors. Once this technology is adapted to SARS-CoV replicon RNAs, it will allow high throughput screening for SARS-CoV replicase inhibitors without the need to grow infectious SARS-CoV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80044-0
2004-06-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851717.html?itemId=/content/journal/jgv/10.1099/vir.0.80044-0&mimeType=html&fmt=ahah

References

  1. Almazan F., Gonzalez J. M., Penzes Z., Izeta A., Calvo E., Plana-Duran J., Enjuanes L. 2000; Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 97:5516–5521 [CrossRef]
    [Google Scholar]
  2. Anand K., Palm G. J., Mesters J. R., Siddell S. G., Ziebuhr J., Hilgenfeld R. 2002; Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J 21:3213–3224 [CrossRef]
    [Google Scholar]
  3. Anand K., Ziebuhr J., Wadhwani P., Mesters J. R., Hilgenfeld R. 2003; Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763–1767 [CrossRef]
    [Google Scholar]
  4. Bartenschlager R. 2002; Hepatitis C virus replicons: potential role for drug development. Nat Rev Drug Discov 1:911–916 [CrossRef]
    [Google Scholar]
  5. Booth C. M., Matukas L. M., Tomlinson G. A. 18 other authors 2003; Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 289:2801–2809 [CrossRef]
    [Google Scholar]
  6. Casais R., Thiel V., Siddell S. G., Cavanagh D., Britton P. 2001; Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369 [CrossRef]
    [Google Scholar]
  7. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H. W. 2003a; Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361:2045–2046 [CrossRef]
    [Google Scholar]
  8. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H. W. 2003b; Treatment of SARS with human interferons. Lancet 362:293–294 [CrossRef]
    [Google Scholar]
  9. Crotty S., Maag D., Arnold J. J., Zhong W., Lau J. Y., Hong Z., Andino R., Cameron C. E. 2000; The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 6:1375–1379 [CrossRef]
    [Google Scholar]
  10. Crotty S., Cameron C. E., Andino R. 2001; RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 98:6895–6900 [CrossRef]
    [Google Scholar]
  11. Davidson A., Siddell S. 2003; Potential for antiviral treatment of severe acute respiratory syndrome. Curr Opin Infect Dis 16:565–571 [CrossRef]
    [Google Scholar]
  12. Donnelly M. L., Hughes L. E., Luke G., Mendoza H., ten Dam E., Gani D., Ryan M. D. 2001; The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J Gen Virol 82:1027–1041
    [Google Scholar]
  13. Donnelly C. A., Ghani A. C., Leung G. M. 16 other authors 2003; Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361:1761–1766 [CrossRef]
    [Google Scholar]
  14. Drosten C., Gunther S., Preiser W. 23 other authors 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [CrossRef]
    [Google Scholar]
  15. Elroy-Stein O., Fuerst T. R., Moss B. 1989; Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5′ sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc Natl Acad Sci U S A 86:6126–6130 [CrossRef]
    [Google Scholar]
  16. Fouchier R. A., Kuiken T., Schutten M. 7 other authors 2003; Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423:240 [CrossRef]
    [Google Scholar]
  17. Frolov I., Hoffman T. A., Pragai B. M., Dryga S. A., Huang H. V., Schlesinger S., Rice C. M. 1996; Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci U S A 93:11371–11377 [CrossRef]
    [Google Scholar]
  18. Gonzalez J. M., Gomez-Puertas P., Cavanagh D., Gorbalenya A. E., Enjuanes L. 2003; A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148:2207–2235 [CrossRef]
    [Google Scholar]
  19. Guan Y., Zheng B. J., He Y. Q. 15 other authors 2003; Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278 [CrossRef]
    [Google Scholar]
  20. Isaacs S. N., Kotwal G. J., Moss B. 1990; Reverse guanine phosphoribosyltransferase selection of recombinant vaccinia viruses. Virology 178:626–630 [CrossRef]
    [Google Scholar]
  21. Kerr S. M., Smith G. L. 1991; Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 180:625–632 [CrossRef]
    [Google Scholar]
  22. Khromykh A. A. 2000; Replicon-based vectors of positive strand RNA viruses. Curr Opin Mol Ther 2:555–569
    [Google Scholar]
  23. Ksiazek T. G., Erdman D., Goldsmith C. S. 23 other authors 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966 [CrossRef]
    [Google Scholar]
  24. Kuiken T., Fouchier R. A., Schutten M. 19 other authors 2003; Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–270 [CrossRef]
    [Google Scholar]
  25. Lai M. M. C., Holmes K. V. 2001; Coronaviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  1163–1185 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  26. Lo M. K., Tilgner M., Shi P. Y. 2003; Potential high-throughput assay for screening inhibitors of West Nile virus replication. J Virol 77:12901–12906 [CrossRef]
    [Google Scholar]
  27. Marra M. A., Jones S. J., Astell C. R. 56 other authors 2003; The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404 [CrossRef]
    [Google Scholar]
  28. Martina B. E., Haagmans B. L., Kuiken T., Fouchier R. A., Rimmelzwaan G. F., Van Amerongen G., Peiris J. S., Lim W., Osterhaus A. D. 2003; Virology: SARS virus infection of cats and ferrets. Nature 425:915 [CrossRef]
    [Google Scholar]
  29. Merchlinsky M., Moss B. 1992; Introduction of foreign DNA into the vaccinia virus genome by in vitro ligation: recombination-independent selectable cloning vectors. Virology 190:522–526 [CrossRef]
    [Google Scholar]
  30. Parry J. 2004; WHO confirms SARS in Chinese journalist. Br Med J 328:65 [CrossRef]
    [Google Scholar]
  31. Peiris J. S., Lai S. T., Poon L. L. 13 other authors; 2003; Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325 [CrossRef]
    [Google Scholar]
  32. Randall G., Rice C. M. 2001; Hepatitis C virus cell culture replication systems: their potential use for the development of antiviral therapies. Curr Opin Infect Dis 14:743–747 [CrossRef]
    [Google Scholar]
  33. Rota P. A., Oberste M. S., Monroe S. S. 32 other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef]
    [Google Scholar]
  34. Sawicki S. G., Sawicki D. L. 1998; A new model for coronavirus transcription. Adv Exp Med Biol 440:215–219
    [Google Scholar]
  35. Snijder E. J., Bredenbeek P. J., Dobbe J. C. 7 other authors 2003; Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004 [CrossRef]
    [Google Scholar]
  36. So L. K., Lau A. C., Yam L. Y., Cheung T. M., Poon E., Yung R. W., Yuen K. Y. 2003; Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet 361:1615–1617 [CrossRef]
    [Google Scholar]
  37. Tanner J. A., Watt R. M., Chai Y. B., Lu L. Y., Lin M. C., Peiris J. S., Poon L. L., Kung H. F., Huang J. D. 2003; The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem 278:39578–39582 [CrossRef]
    [Google Scholar]
  38. Thiel V., Rashtchian A., Herold J., Schuster D. M., Guan N., Siddell S. G. 1997; Effective amplification of 20-kb DNA by reverse transcription PCR. Anal Biochem 252:62–70 [CrossRef]
    [Google Scholar]
  39. Thiel V., Herold J., Schelle B., Siddell S. G. 2001a; Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82:1273–1281
    [Google Scholar]
  40. Thiel V., Herold J., Schelle B., Siddell S. G. 2001b; Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681 [CrossRef]
    [Google Scholar]
  41. Thiel V., Ivanov K. A., Putics A. 9 other authors 2003a; Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315 [CrossRef]
    [Google Scholar]
  42. Thiel V., Karl N., Schelle B., Disterer P., Klagge I., Siddell S. G. 2003b; Multigene RNA vector based on coronavirus transcription. J Virol 77:9790–9798 [CrossRef]
    [Google Scholar]
  43. Yang H., Yang M., Ding Y. 12 other authors 2003; The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 100:13190–13195 [CrossRef]
    [Google Scholar]
  44. Yount B., Curtis K. M., Baric R. S. 2000; Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol 74:10600–10611 [CrossRef]
    [Google Scholar]
  45. Yount B., Denison M. R., Weiss S. R., Baric R. S. 2002; Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol 76:11065–11078 [CrossRef]
    [Google Scholar]
  46. Yount B., Curtis K. M., Fritz E. A., Hensley L. E., Jahrling P. B., Prentice E., Denison M. R., Geisbert T. W., Baric R. S. 2003; Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 100:12995–13000 [CrossRef]
    [Google Scholar]
  47. Ziebuhr J., Siddell S. G. 2002; Nidovirales. In The Encyclopaedia of Life Sciences pp  190–198 Edited by Atlas R., Bynum W. F., Cox M. London: Stockton Press;
    [Google Scholar]
  48. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81:853–879
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80044-0
Loading
/content/journal/jgv/10.1099/vir.0.80044-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error