1887

Abstract

Influenza B virus is one of two types of influenza virus that cause substantial morbidity and mortality in humans, the other being influenza A virus. The inability to provide lasting protection to humans against influenza B virus infection is due, in part, to antigenic drift of the viral surface glycoprotein, haemagglutinin (HA). Studies of the antigenicity of the HA of influenza B virus have been hampered by lack of knowledge of its structure. To address this gap, two possible models have been inferred for this structure, based on two known structures of the homologous HA of the influenza A virus (subtypes H3 and H9). Statistical, structural and functional analyses of these models suggested that they matched important details of experimental observations and did not differ from each other in any substantive way. These models were used to investigate two HA sites at which viral variants appeared to carry a selective advantage. It was found that each of these sites coevolved with nearby sites to compensate for either size or charge changes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80021-0
2004-11-01
2020-10-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853249.html?itemId=/content/journal/jgv/10.1099/vir.0.80021-0&mimeType=html&fmt=ahah

References

  1. Berton M. T., Webster R. G. 1985; The antigenic structure of the influenza B virus hemagglutinin: operational and topological mapping with monoclonal antibodies. Virology 143:583–594 [CrossRef]
    [Google Scholar]
  2. Berton M. T., Naeve C. W., Webster R. G. 1984; Antigenic structure of the influenza B virus haemagglutinin: nucleotide sequence analysis of antigenic variants selected with monoclonal antibodies. J Virol 52:919–927
    [Google Scholar]
  3. Bonneau R., Baker D. 2001; Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct 30:173–189 [CrossRef]
    [Google Scholar]
  4. Cai Y.-D., Li Y.-X., Chou K.-C. 1999; Classification and prediction of β -turn types by neural network. Adv Eng Softw 30:347–352 [CrossRef]
    [Google Scholar]
  5. Fasman G. D. 1989; Protein conformational prediction. Trends Biochem Sci 14:295–299 [CrossRef]
    [Google Scholar]
  6. Fetrow J. S., Spitzer J. S., Gilden B. M., Mellender S. J., Begley T. J., Haas B. J., Boose T. L. 1998; Structure, function, and temperature sensitivity of directed, random mutants at proline 76 and glycine 77 in Ω-loop D of yeast iso-1-cytochrome c . Biochemistry 37:2477–2487 [CrossRef]
    [Google Scholar]
  7. Gamblin S. J., Haire L. F., Russell R. J. 9 other authors 2004; The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303:1838–1842 [CrossRef]
    [Google Scholar]
  8. Ha Y., Stevens D. J., Skehel J. J., Wiley D. C. 2001; X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A 98:11181–11186 [CrossRef]
    [Google Scholar]
  9. Hay A. J., Gregory V., Douglas A. R., Lin Y. P. 2001; The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356:1861–1870 [CrossRef]
    [Google Scholar]
  10. Hovanec D. L., Air G. M. 1984; Antigenic structure of the hemagglutinin of influenza virus B/Hong Kong/8/73 as determined from gene sequence analysis of variants selected with monoclonal antibodies. Virology 139:384–392 [CrossRef]
    [Google Scholar]
  11. Huang E. S., Samudrala R., Ponder J. W. 1999; Ab initio fold prediction of small helical proteins using distance geometry and knowledge-based scoring functions. J Mol Biol 290:267–281 [CrossRef]
    [Google Scholar]
  12. Hubbard S. J., Thornton J. M. 1993 naccess: atomic solvent accessible area calculations Department of Biochemistry and Molecular Biology; University College London, UK: http://wolf.bms.umist.ac.uk/naccess/
    [Google Scholar]
  13. Krystal M., Elliott R. M., Benz E. W. Jr, Young J. F., Palese P. 1982; Evolution of influenza A and B viruses: conservation of structural features in the hemagglutinin genes. Proc Natl Acad Sci U S A 79:4800–4804 [CrossRef]
    [Google Scholar]
  14. Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M. 1993; procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291 [CrossRef]
    [Google Scholar]
  15. Macken C., Lu H., Goodman J., Boykin L. 2001; The value of a database in surveillance and vaccine selection. In Options for the Control of Influenza IV Edited by Osterhaus A. D. M. E., Cox N., Hampson A. W. Amsterdam: Elsevier;
    [Google Scholar]
  16. Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F., Šali A. 2000; Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325 [CrossRef]
    [Google Scholar]
  17. Matrosovich M. N., Gambaryan A. S., Tuzikov A. B., Byramova N. E., Mochalova L. V., Golbraikh A. A., Shenderovich M. D., Finne J., Bovin N. V. 1993; Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Virology 196:111–121 [CrossRef]
    [Google Scholar]
  18. McCullers J. A., Wang G. C., He S., Webster R. G. 1999; Reassortment and insertion-deletion are strategies for the evolution of influenza B viruses in nature. J Virol 73:7343–7348
    [Google Scholar]
  19. Moult J. 1999; Predicting protein three-dimensional structure. Curr Opin Biotechnol 10:583–588 [CrossRef]
    [Google Scholar]
  20. Ramachandran G. N., Ramakrishnan C., Sasisekharan V. 1963; Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99 [CrossRef]
    [Google Scholar]
  21. Rivera K., Thomas H., Zhang H., Bossart-Whitaker P., Wei X., Air G. M. 1995; Probing the structure of influenza B hemagglutinin using site-directed mutagenesis. Virology 206:787–795 [CrossRef]
    [Google Scholar]
  22. Rosenthal P. B., Zhang X., Formanowski F., Fitz W., Wong C.-H., Meier-Ewert H., Skehel J. J., Wiley D. C. 1998; Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396:92–96 [CrossRef]
    [Google Scholar]
  23. Ryu K., Lee H., Kim S., Beauchamp J., Tung C.-S., Isaacs N. W., Ji I., Ji T. H. 1998; Modulation of high affinity hormone binding. Human choriogonadotropin binding to the exodomain of the receptor is influenced by exoloop 2 of the receptor. J Biol Chem 273:6285–6291 [CrossRef]
    [Google Scholar]
  24. Sánchez R., Šali A. 1997; Advances in comparative protein-structure modelling. Curr Opin Struct Biol 7:206–214 [CrossRef]
    [Google Scholar]
  25. Stevens J., Corper A. L., Basler C. F., Taubenberger J. K., Palese P., Wilson I. A. 2004; Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866–1870 [CrossRef]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  27. Tramontano A. 1998; Homology modeling with low sequence identity. Methods 14:293–300 [CrossRef]
    [Google Scholar]
  28. Tung C. S. 1997; A computational approach to modeling nucleic acid hairpin structures. Biophys J 72:876–885 [CrossRef]
    [Google Scholar]
  29. Tung C. S. 1999; Structural study of homeodomain protein-DNA complexes using a homology modeling approach. J Biomol Struct Dyn 17:347–354 [CrossRef]
    [Google Scholar]
  30. Weiner S. J., Kollman P. A., Nguyen D. T., Case D. A. 1986; An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252 [CrossRef]
    [Google Scholar]
  31. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. 1988; Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431 [CrossRef]
    [Google Scholar]
  32. Wilson I. A., Cox N. J. 1990; Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol 8:737–771 [CrossRef]
    [Google Scholar]
  33. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373 [CrossRef]
    [Google Scholar]
  34. Wilson K. S., Butterworth S., Dauter Z. 17 other authors 1998; Who checks the checkers? Four validation tools applied to eight atomic resolution structures. J Mol Biol 276:417–436 [CrossRef]
    [Google Scholar]
  35. Zimmerman S. S., Scheraga H. A. 1977; Local interactions in bends of proteins. Proc Natl Acad Sci U S A 74:4126–4129 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80021-0
Loading
/content/journal/jgv/10.1099/vir.0.80021-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error