1887

Abstract

The full-length ORFs for the hepatitis C virus recombinant RF1_2k/1b (N687) and the non-recombinant 1b strain N589 were sequenced. A single recombination point was found and the sizes of the genes (C, E1, E2, p7, NS2, NS3, NS4 and NS5) were according to the parental subtypes. The PKR-eIF2 phosphorylation site homology domain sequence of the E2 protein was identical to those of genotype 2 strains, while the IFN--sensitivity-determining region of the NS5A protein was identical to those of interferon-resistant 1b strains. For the parental strains, two hairpin structures, HS1 and HS2, were predicted for the plus-strand up- and downstream of the crossover site, which were not present in the recombinant strain. HS2 shared similarity with the motif1 hairpin of turnip crinkle virus RNA that binds to the RNA-dependent RNA polymerase and facilitates 3′-terminal extension during recombination. This study suggests that RF1_2k/1b has emerged by homologous recombination during minus-strand synthesis via template switching because of constraints imposed by the HS1 hairpin of the 3′-parental genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79984-0
2004-07-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/7/vir851853.html?itemId=/content/journal/jgv/10.1099/vir.0.79984-0&mimeType=html&fmt=ahah

References

  1. Behrens, S. E., Tomei, L. & De Francesco, R. ( 1996; ). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 15, 12–22.
    [Google Scholar]
  2. De Francesco, R. ( 1999; ). Molecular virology of the hepatitis C virus. J Hepatol 31, S47–S53.
    [Google Scholar]
  3. Enomoto, N., Sakuma, I., Asahina, Y. & 7 other authors ( 1996; ). Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 334, 77–81.[CrossRef]
    [Google Scholar]
  4. Farci, P. & Purcell, R. H. ( 2000; ). Clinical significance of hepatitis C virus genotypes and quasispecies. Semin Liver Dis 20, 103–126.
    [Google Scholar]
  5. Figlerowicz, M., Nagy, P. D. & Bujarski, J. J. ( 1997; ). A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in an RNA virus. Proc Natl Acad Sci U S A 94, 2073–2078.[CrossRef]
    [Google Scholar]
  6. Gastaldi, M., Massacrier, A., Planells, R. & 7 other authors ( 1995; ). Detection by in situ hybridization of hepatitis C virus positive and negative RNA strands using digoxigenin-labeled cRNA probes in human liver cells. J Hepatol 23, 509–518.[CrossRef]
    [Google Scholar]
  7. Gerotto, M., Dal Pero, F., Sullivan, D. G., Chemello, L., Cavalletto, L., Polyak, S. J., Pontisso, P., Gretch, D. R. & Alberti, A. ( 1999; ). Evidence for sequence selection within the non-structural 5A gene of hepatitis C virus type 1b during unsuccessful treatment with interferon-α. J Viral Hepat 6, 367–372.[CrossRef]
    [Google Scholar]
  8. Guillot, S., Caro, V., Cuervo, N., Korotkova, E., Combiescu, M., Persu, A., Aubert-Combiescu, A., Delpeyroux, F. & Crainic, R. ( 2000; ). Natural genetic exchanges between vaccine and wild poliovirus strains in humans. J Virol 74, 8434–8443.[CrossRef]
    [Google Scholar]
  9. Kalinina, O., Norder, H., Mukomolov, S. & Magnius, L. O. ( 2002; ). A natural intergenotypic recombinant of hepatitis C virus identified in St Petersburg. J Virol 76, 4034–4043.[CrossRef]
    [Google Scholar]
  10. Lai, M. M. ( 1992; ). RNA recombination in animal and plant viruses. Microbiol Rev 56, 61–79.
    [Google Scholar]
  11. Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W. & Ray, S. C. ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152–160.
    [Google Scholar]
  12. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.[CrossRef]
    [Google Scholar]
  13. Nagy, P. D. & Simon, A. E. ( 1998a; ). In vitro characterization of late steps of RNA recombination in turnip crinkle virus: role of the motif1-hairpin structure. Virology 249, 379–392.[CrossRef]
    [Google Scholar]
  14. Nagy, P. D. & Simon, A. E. ( 1998b; ). In vitro characterization of late steps of RNA recombination in turnip crinkle virus: the role of the priming stem and flanking sequences. Virology 249, 393–405.[CrossRef]
    [Google Scholar]
  15. Nagy, P. D., Zhang, C. & Simon, A. E. ( 1998; ). Dissecting RNA recombination in vitro: role of RNA sequences and the viral replicase. EMBO J 17, 2392–2403.[CrossRef]
    [Google Scholar]
  16. Nagy, P. D., Pogany, J. & Simon, A. E. ( 1999; ). RNA elements required for RNA recombination function as replication enhancers in vitro and in vivo in a plus-strand RNA virus. EMBO J 18, 5653–5665.[CrossRef]
    [Google Scholar]
  17. Nouri-Aria, K. T., Sallie, R., Sangar, D., Alexander, G. J., Smith, H., Byrne, J., Portmann, B., Eddleston, A. & Williams, R. ( 1993; ). Detection of genomic and intermediate replicative strands of hepatitis C virus in liver tissue by in situ hybridization. J Clin Invest 91, 2226–2234.[CrossRef]
    [Google Scholar]
  18. Polyak, S. J., Nousbaum, J. B., Larson, A. M., Cotler, S., Carithers, R. L., Jr & Gretch, D. R. ( 2000; ). The protein kinase-interacting domain in the hepatitis C virus envelope glycoprotein-2 gene is highly conserved in genotype 1-infected patients treated with interferon. J Infect Dis 182, 397–404.[CrossRef]
    [Google Scholar]
  19. Ranjith-Kumar, C. T., Gutshall, L., Kim, M. J., Sarisky, R. T. & Kao, C. C. ( 2002; ). Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases. J Virol 76, 12526–12536.[CrossRef]
    [Google Scholar]
  20. Reigadas, S., Ventura, M., Sarih-Cottin, L., Castroviejo, M., Litvak, S. & Astier-Gin, T. ( 2001; ). HCV RNA-dependent RNA polymerase replicates in vitro the 3′ terminal region of the minus-strand viral RNA more efficiently than the 3′ terminal region of the plus RNA. Eur J Biochem 268, 5857–5867.[CrossRef]
    [Google Scholar]
  21. Robertson, B., Myers, G., Howard, C. & 14 other authors ( 1998; ). Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. International Committee on Virus Taxonomy. Arch Virol 143, 2493–2503.[CrossRef]
    [Google Scholar]
  22. Salminen, M. O. & Cobb, W. ( 1998; ). Bootscanning package for Unix/Linux version 1. National Public Health Institute, Helsinki, Finland. http://www.ktl.fi/hiv
  23. Simmonds, P. ( 1999; ). Viral heterogeneity of the hepatitis C virus. J Hepatol 31, S54–S60.[CrossRef]
    [Google Scholar]
  24. Simmonds, P. ( 2001; ). The origin and evolution of hepatitis viruses in humans. J Gen Virol 82, 693–712.
    [Google Scholar]
  25. Taylor, D. R. ( 2001; ). Hepatitis C virus and interferon resistance: it's more than just PKR. Hepatology 33, 1547–1549.[CrossRef]
    [Google Scholar]
  26. Taylor, D. R., Shi, S. T., Romano, P. R., Barber, G. N. & Lai, M. M. ( 1999; ). Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285, 107–110.[CrossRef]
    [Google Scholar]
  27. Taylor, D. R., Shi, S. T. & Lai, M. M. ( 2000; ). Hepatitis C virus and interferon resistance. Microbes Infect 2, 1743–1756.[CrossRef]
    [Google Scholar]
  28. Taylor, D. R., Tian, B., Romano, P. R., Hinnebusch, A. G., Lai, M. M. & Mathews, M. B. ( 2001; ). Hepatitis C virus envelope protein E2 does not inhibit PKR by simple competition with autophosphorylation sites in the RNA-binding domain. J Virol 75, 1265–1273.[CrossRef]
    [Google Scholar]
  29. Twiddy, S. S. & Holmes, E. C. ( 2003; ). The extent of homologous recombination in members of the genus Flavivirus. J Gen Virol 84, 429–440.[CrossRef]
    [Google Scholar]
  30. White, K. A. & Morris, T. J. ( 1995; ). RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA 1, 1029–1040.
    [Google Scholar]
  31. Worobey, M., Rambaut, A. & Holmes, E. C. ( 1999; ). Widespread intra-serotype recombination in natural populations of dengue virus. Proc Natl Acad Sci U S A 96, 7352–7351.[CrossRef]
    [Google Scholar]
  32. Zein, N. N. ( 2000; ). Clinical significance of hepatitis C virus genotypes. Clin Microbiol Rev 13, 223–235.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79984-0
Loading
/content/journal/jgv/10.1099/vir.0.79984-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error