1887

Abstract

The 3a movement protein (MP) plays a central role in the movement of (BMV). To identify the functional regions in BMV MP, 24 alanine-scanning (AS) MP mutants of BMV were constructed. Infectivity of the AS mutants in the host plant showed that the central region of BMV MP is important for viral movement and both termini of BMV MP have effects on the development of systemic symptoms. A green-fluorescent-protein-expressing RNA3-based BMV vector containing a 2A sequence from was also constructed. Using this vector, two AS mutants that showed more efficient cell-to-cell movement than wild-type BMV were identified. The MPs of these two AS mutants, which have mutations at their C termini, mediated cell-to-cell movement independently of coat protein (CP), unlike wild-type BMV MP. Furthermore, a BMV mutant with a truncation in the C-terminal 42 amino acids of MP was also able to move from cell to cell without CP, but did not move systemically, even in the presence of CP. These results and an encapsidation analysis suggest that the C terminus of BMV MP is involved in the requirement for CP in cell-to-cell movement and plays a role in long-distance movement. Furthermore, the ability to spread locally and form virions is not sufficient for the long-distance movement of BMV. The roles of MP and CP in BMV movement are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79976-0
2004-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851751.html?itemId=/content/journal/jgv/10.1099/vir.0.79976-0&mimeType=html&fmt=ahah

References

  1. Ahlquist P. 1999; Bromoviruses ( Bromoviridae ). In Encyclopedia of Virology . , 2nd edn. vol 1 pp  198–204 Edited by Granoff A., Webster R. G. San Diego, CA: Academic Press;
  2. Ahlquist P., Luckow V., Kaesberg P. 1981; Complete nucleotide sequence of brome mosaic virus RNA3. J Mol Biol 153:23–38 [CrossRef]
    [Google Scholar]
  3. Allison R. F., Janda M., Ahlquist P. 1989; Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution. Virology 172:321–330 [CrossRef]
    [Google Scholar]
  4. Blackman L. M., Boevink P., Santa Cruz S., Palukaitis P., Oparka K. J. 1998; The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii . Plant Cell 10:525–537 [CrossRef]
    [Google Scholar]
  5. Callaway A., Giesman-Cookmeyer D., Gillock E. T., Sit T. L., Lommel S. A. 2001; The multifunctional capsid proteins of plant RNA virus. Annu Rev Phytopathol 39:419–460 [CrossRef]
    [Google Scholar]
  6. Canto T., Prior D. A., Hellwald K. H., Oparka K. J., Palukaitis P. 1997; Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237:237–248 [CrossRef]
    [Google Scholar]
  7. Carrington J. C., Kasschau K. D., Mahajan S. K., Schaad M. C. 1996; Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681 [CrossRef]
    [Google Scholar]
  8. Carvalho C. M., Wellink J., Ribeiro S. G., Goldbach R. W., van Lent J. W. M. 2003; The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 84:2271–2277 [CrossRef]
    [Google Scholar]
  9. Choi Y. G., Rao A. L. N. 2003; Packaging of brome mosaic virus RNA3 is mediated through a bipartite signal. J Virol 77:9750–9757 [CrossRef]
    [Google Scholar]
  10. Cormack B. P., Valdivia R. H., Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38 [CrossRef]
    [Google Scholar]
  11. Cunningham B. C., Wells J. A. 1989; High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1081–1085 [CrossRef]
    [Google Scholar]
  12. Damayanti T. A., Nagano H., Mise K., Furusawa I., Okuno T. 1999; Brome mosaic virus defective RNAs generated during infection of barley plants. J Gen Virol 80:2511–2518
    [Google Scholar]
  13. Damayanti T. A., Nagano H., Mise K., Furusawa I., Okuno T. 2002; Positional effect of deletions on viability, especially on encapsidation, of Brome mosaic virus D-RNA in barley protoplasts. Virology 293:314–319 [CrossRef]
    [Google Scholar]
  14. Damayanti T. A., Tsukaguchi S., Mise K., Okuno T. 2003; cis -acting elements required for efficient packaging of brome mosaic virus RNA3 in barley protoplasts. J Virol 77:9979–9986 [CrossRef]
    [Google Scholar]
  15. Dawson W. O., Bubrick P., Grantham G. L. 1988; Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomology. Phytopathology 78:783–789 [CrossRef]
    [Google Scholar]
  16. de Felipe P., Hughes L. E., Ryan M. D., Brown J. D. 2003; Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem 278:11441–11448 [CrossRef]
    [Google Scholar]
  17. De Jong W., Chu A., Ahlquist P. 1995; Coding changes in the 3a cell-to-cell movement gene can extend the host range of brome mosaic virus systemic infection. Virology 214:464–474 [CrossRef]
    [Google Scholar]
  18. Dohi K., Mori M., Furusawa I., Mise K., Okuno T. 2001; Brome mosaic virus replicase proteins localize with the movement protein at infection-specific cytoplasmic inclusions in infected barley leaf cells. Arch Virol 146:1607–1615 [CrossRef]
    [Google Scholar]
  19. Emini E. A., Hughes J. V., Perlow D. S., Boger J. 1985; Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839
    [Google Scholar]
  20. Flasinski S., Dzianott A., Pratt S., Bujarski J. J. 1995; Mutational analysis of the coat protein gene of brome mosaic virus: effects on replication and movement in barley and in Chenopodium hybridum . Mol Plant Microbe Interact 8:23–31 [CrossRef]
    [Google Scholar]
  21. Fujisaki K., Hagihara F., Kaido M., Mise K., Okuno T. 2003; Complete nucleotide sequence of spring beauty latent virus, a bromovirus infectious to Arabidopsis thaliana . Arch Virol 148:165–175 [CrossRef]
    [Google Scholar]
  22. Fujita Y., Mise K., Okuno T., Ahlquist P., Furusawa I. 1996; A single codon change in a conserved motif of a bromovirus movement protein gene confers compatibility with a new host. Virology 223:283–291 [CrossRef]
    [Google Scholar]
  23. Fujita M., Mise K., Kajiura Y., Dohi K., Furusawa I. 1998; Nucleic acid-binding properties and subcellular localization of the 3a protein of brome mosaic bromovirus. J Gen Virol 79:1273–1280
    [Google Scholar]
  24. Fujita Y., Fujita M., Mise K., Kobori T., Osaki T., Furusawa I. 2000; Bromovirus movement protein conditions for the host specificity of virus movement through the vascular system and affects pathogenicity in cowpea. Mol Plant Microbe Interact 13:1195–1203 [CrossRef]
    [Google Scholar]
  25. Giesman-Cookmeyer D., Lommel S. A. 1993; Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains. Plant Cell 5:973–982 [CrossRef]
    [Google Scholar]
  26. Gillespie T., Boevink P., Haupt S., Roberts A. G., Toth R., Valentine T., Chapman S., Oparka K. J. 2002; Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus . Plant Cell 14:1207–1222 [CrossRef]
    [Google Scholar]
  27. Huang M., Jongejan L., Zheng H., Zhang L., Bol J. F. 2001; Intracellular localization and movement phenotypes of Alfalfa mosaic virus movement protein mutants. Mol Plant Microbe Interact 14:1063–1074 [CrossRef]
    [Google Scholar]
  28. Janda M., French R., Ahlquist P. 1987; High efficiency T7 polymerase synthesis of infectious RNA from cloned brome mosaic virus cDNA and effects of 5′ extensions on transcript infectivity. Virology 158:259–262 [CrossRef]
    [Google Scholar]
  29. Jansen K. A., Wolfs C. J., Lohuis H., Goldbach R. W., Verduin B. J. 1998; Characterization of the brome mosaic virus movement protein expressed in E. coli . Virology242387–394 [CrossRef]
    [Google Scholar]
  30. Kao C. C., Sivakumaran K. 2000; Brome mosaic virus, good for an RNA virologist's basic needs. Mol Plant Pathol 1:91–97 [CrossRef]
    [Google Scholar]
  31. Kaplan I. B., Zhang L., Palukaitis P. 1998; Characterization of cucumber mosaic virus. V. Cell-to-cell movement requires capsid protein but not virions. Virology 246:221–231 [CrossRef]
    [Google Scholar]
  32. Kasteel D., Wellink J., Verver J., van Lent J., Goldbach R., van Kammen A. 1993; The involvement of cowpea mosaic virus M RNA-encoded protein in tubule formation. J Gen Virol 74:1721–1724 [CrossRef]
    [Google Scholar]
  33. Kasteel D. T. J., van der Wel N. N., Jansen K. A. J., Goldbach R. W., van Lent J. W. M. 1997; Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. J Gen Virol 78:2089–2093
    [Google Scholar]
  34. Koonin E. V., Mushegian A. R., Ryabov E. V., Dolja V. V. 1991; Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72:2895–2903 [CrossRef]
    [Google Scholar]
  35. Kroner P., Ahlquist P. 1992; RNA-based viruses. In Molecular Plant Pathology: a Practical Approach vol. 1 pp  23–34 Edited by Gurr S. J., McPherson M. J., Bowles D. J. Oxford: IRL Press;
    [Google Scholar]
  36. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  37. Lazarowitz S. G., Beachy R. N. 1999; Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11:535–548 [CrossRef]
    [Google Scholar]
  38. Li Q., Ryu K. H., Palukaitis P. 2001; Cucumber mosaic virus –plant interactions: identification of 3a protein sequences affecting infectivity, cell-to-cell movement, and long-distance movement. Mol Plant Microbe Interact 14:378–385 [CrossRef]
    [Google Scholar]
  39. Miller W. A., Dreher T. W., Hall T. C. 1985; Synthesis of brome mosaic virus subgenomic RNA in vitro by initiation on (−)-sense genomic RNA. Nature 313:68–70 [CrossRef]
    [Google Scholar]
  40. Mise K., Ahlquist P. 1995; Host-specificity restriction by bromovirus cell-to-cell movement protein occurs after initial cell-to-cell spread of infection in nonhost plants. Virology 206:276–286 [CrossRef]
    [Google Scholar]
  41. Mise K., Allison R. F., Janda M., Ahlquist P. 1993; Bromovirus movement protein genes play a crucial role in host specificity. J Virol 67:2815–2823
    [Google Scholar]
  42. Nagano H., Mise K., Okuno T., Furusawa I. 1999; The cognate coat protein is required for cell-to-cell movement of a chimeric brome mosaic virus mediated by the cucumber mosaic virus movement protein. Virology 265:226–234 [CrossRef]
    [Google Scholar]
  43. Nagano H., Mise K., Furusawa I., Okuno T. 2001; Conversion in the requirement of coat protein in cell-to-cell movement mediated by the cucumber mosaic virus movement protein. J Virol 75:8045–8053 [CrossRef]
    [Google Scholar]
  44. Okinaka Y., Mise K., Suzuki E., Okuno T., Furusawa I. 2001; The C terminus of brome mosaic virus coat protein controls viral cell-to-cell and long-distance movement. J Virol 75:5385–5390 [CrossRef]
    [Google Scholar]
  45. Osman F., Schmitz I., Rao A. L. N. 1999; Effect of C-terminal deletions in the movement protein of cowpea chlorotic mottle virus on cell-to-cell and long-distance movement. J Gen Virol 80:1357–1365
    [Google Scholar]
  46. Rao A. L. N. 1997; Molecular studies on bromovirus capsid protein. III. Analysis of cell-to-cell movement competence of coat protein defective variants of cowpea chlorotic mottle virus. Virology 232:385–395 [CrossRef]
    [Google Scholar]
  47. Rao A. L. N., Grantham G. L. 1995a; A spontaneous mutation in the movement protein gene of brome mosaic virus modulates symptom phenotype in Nicotiana benthamiana . J Virol 69:2689–2691
    [Google Scholar]
  48. Rao A. L. N., Grantham G. L. 1995b; Biological significance of the seven amino-terminal basic residues of brome mosaic virus coat protein. Virology 211:42–52 [CrossRef]
    [Google Scholar]
  49. Rao A. L. N., Grantham G. L. 1996; Molecular studies on bromovirus capsid protein. II. Functional analysis of the amino-terminal arginine-rich motif and its role in encapsidation, movement and pathology. Virology 226:294–305 [CrossRef]
    [Google Scholar]
  50. Romero J., Dzianott A. M., Bujarski J. J. 1992; The nucleotide sequence and genome organization of the RNA2 and RNA3 segments in broad bean mottle virus. Virology 187:671–681 [CrossRef]
    [Google Scholar]
  51. Ryan M. D., Drew J. 1994; Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 13:928–933
    [Google Scholar]
  52. Sacher R., Ahlquist P. 1989; Effects of deletions in the N-terminal basic arm of brome mosaic virus coat protein on RNA packaging and systemic infection. J Virol 63:4545–4552
    [Google Scholar]
  53. Sanchez-Navarro J. A., Bol J. F. 2001; Role of the alfalfa mosaic virus movement protein and coat protein in virus transport. Mol Plant Microbe Interact 14:1051–1062 [CrossRef]
    [Google Scholar]
  54. Sanchez-Navarro J., Miglino R., Ragozzino A., Bol J. F. 2001; Engineering of alfalfa mosaic virus RNA 3 into an expression vector. Arch Virol 146:923–939 [CrossRef]
    [Google Scholar]
  55. Sasaki N., Fujita Y., Mise K., Furusawa I. 2001; Site-specific single amino acid changes to Lys or Arg in the central region of the movement protein of a hybrid bromovirus are required for adaptation to a nonhost. Virology 279:47–57 [CrossRef]
    [Google Scholar]
  56. Sasaki N., Arimoto M., Nagano H., Mori M., Kaido M., Mise K., Okuno T. 2003; The movement protein gene is involved in the virus-specific requirement of the coat protein in cell-to-cell movement of bromoviruses. Arch Virol 148:803–812 [CrossRef]
    [Google Scholar]
  57. Schmitz I., Rao A. L. N. 1996; Molecular studies on bromovirus capsid protein. I. Characterization of cell-to-cell movement-defective RNA3 variants of brome mosaic virus. Virology 226:281–293 [CrossRef]
    [Google Scholar]
  58. Schmitz I., Rao A. L. N. 1998; Deletions in the conserved amino-terminal basic arm of cucumber mosaic virus coat protein disrupt virion assembly but do not abolish infectivity and cell-to-cell movement. Virology 248:323–331 [CrossRef]
    [Google Scholar]
  59. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  60. Toth R. L., Pogue G. P., Chapman S. 2002; Improvement of the movement and host range properties of a plant virus vector through DNA shuffling. Plant J 30:593–600 [CrossRef]
    [Google Scholar]
  61. Wang H.-L., Wang Y., Giesman-Cookmeyer D., Lommel S. A., Lucas W. J. 1998; Mutations in viral movement protein alter systemic infection and identify an intercellular barrier to entry into the phloem long-distance transport system. Virology 245:75–89 [CrossRef]
    [Google Scholar]
  62. Wellink J., Van Kammen A. 1989; Cell-to-cell transport of cowpea mosaic virus requires both the 58K/48K proteins and the capsid proteins. J Gen Virol 70:2279–2286 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79976-0
Loading
/content/journal/jgv/10.1099/vir.0.79976-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error