1887

Abstract

Influenza virus still poses a major threat to human health. Despite widespread vaccination programmes and the development of drugs targeting essential viral proteins, the extremely high mutation rate of influenza virus still leads to the emergence of new pathogenic virus strains. Therefore, it has been suggested that cellular cofactors that are essential for influenza virus infection might be better targets for antiviral therapy. It has previously been reported that influenza virus efficiently infects Epstein–Barr virus-immortalized B cells, whereas Burkitt's lymphoma cells are virtually resistant to infection. Using this cellular system, it has been shown here that an active NF-B signalling pathway is a general prerequisite for influenza virus infection of human cells. Cells with low NF-B activity were resistant to influenza virus infection, but became susceptible upon activation of NF-B. In addition, blocking of NF-B activation severely impaired influenza virus infection of otherwise highly susceptible cells, including the human lung carcinoma cell lines A549 and U1752 and primary human cells. On the other hand, infection with vaccinia virus was not dependent on an active NF-B signalling pathway, demonstrating the specificity of this pathway for influenza virus infection. These results might be of major importance for both the development of new antiviral therapies and the understanding of influenza virus biology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79958-0
2004-08-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/8/vir852347.html?itemId=/content/journal/jgv/10.1099/vir.0.79958-0&mimeType=html&fmt=ahah

References

  1. Alizadeh, A. A., Eisen, M. B., Davis, R. E. & 28 other authors ( 2000; ). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511.[CrossRef]
    [Google Scholar]
  2. Azzeh, M., Flick, R. & Hobom, G. ( 2001; ). Functional analysis of the influenza A virus cRNA promoter and construction of an ambisense transcription system. Virology 289, 400–410.[CrossRef]
    [Google Scholar]
  3. Berberich, I., Shu, G. L. & Clark, E. A. ( 1994; ). Cross-linking CD40 on B cells rapidly activates nuclear factor-κB. J Immunol 153, 4357–4366.
    [Google Scholar]
  4. Bornkamm, G. W. & Hammerschmidt, W. ( 2001; ). Molecular virology of Epstein–Barr virus. Philos Trans R Soc Lond B Biol Sci 356, 437–459.[CrossRef]
    [Google Scholar]
  5. Bridges, C. B., Harper, S. A., Fukuda, K., Uyeki, T. M., Cox, N. J. & Singleton, J. A. ( 2003; ). Prevention and control of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 52, 1–34; quiz CE1–4.
    [Google Scholar]
  6. Dudziak, D., Kieser, A., Dirmeier, U. & 7 other authors ( 2003; ). Latent membrane protein 1 of Epstein–Barr virus induces CD83 by the NF-κB signaling pathway. J Virol 77, 8290–8298.[CrossRef]
    [Google Scholar]
  7. Eliopoulos, A. G. & Rickinson, A. B. ( 1998; ). Epstein–Barr virus: LMP1 masquerades as an active receptor. Curr Biol 8, R196–198.[CrossRef]
    [Google Scholar]
  8. Fleming, D. M. ( 2001; ). Managing influenza: amantadine, rimantadine and beyond. Int J Clin Pract 55, 189–195.
    [Google Scholar]
  9. Flory, E., Kunz, M., Scheller, C., Jassoy, C., Stauber, R., Rapp, U. R. & Ludwig, S. ( 2000; ). Influenza virus-induced NF-κB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IκB kinase. J Biol Chem 275, 8307–8314.[CrossRef]
    [Google Scholar]
  10. Garcia-Sastre, A. ( 2001; ). Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279, 375–384.[CrossRef]
    [Google Scholar]
  11. Geiss, G. K., Salvatore, M., Tumpey, T. M. & 8 other authors ( 2002; ). Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A 99, 10736–10741.[CrossRef]
    [Google Scholar]
  12. Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D. & Hammerschmidt, W. ( 1997; ). Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 16, 6131–6140.[CrossRef]
    [Google Scholar]
  13. Gubareva, L. V., Webster, R. G. & Hayden, F. G. ( 2002; ). Detection of influenza virus resistance to neuraminidase inhibitors by an enzyme inhibition assay. Antiviral Res 53, 47–61.[CrossRef]
    [Google Scholar]
  14. Hatta, M. & Kawaoka, Y. ( 2002; ). The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol 10, 340–344.[CrossRef]
    [Google Scholar]
  15. Hertzog, P. J., O'Neill, L. A. & Hamilton, J. A. ( 2003; ). The interferon in TLR signaling: more than just antiviral. Trends Immunol 24, 534–539.[CrossRef]
    [Google Scholar]
  16. Huen, D. S., Henderson, S. A., Croom-Carter, D. & Rowe, M. ( 1995; ). The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549–560.
    [Google Scholar]
  17. Inoue, K., Suzuki, S., Kubo, H., Ueda, S. & Kondo, T. ( 2003; ). Effects of rewarming on nuclear factor-κB and interleukin 8 expression in cold-preserved alveolar epithelial cells. Transplantation 76, 409–415.[CrossRef]
    [Google Scholar]
  18. Kaufman, J., Graf, B. A., Leung, E. C., Pollock, S. J., Koumas, L., Reddy, S. Y., Blieden, T. M., Smith, T. J. & Phipps, R. P. ( 2001; ). Fibroblasts as sentinel cells: role of the CD40–CD40 ligand system in fibroblast activation and lung inflammation and fibrosis. Chest 120, 53S–55S.[CrossRef]
    [Google Scholar]
  19. Kempkes, B., Zimber-Strobl, U., Eissner, G., Pawlita, M., Falk, M., Hammerschmidt, W. & Bornkamm, G. W. ( 1996; ). Epstein–Barr virus nuclear antigen 2 (EBNA2)–oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein–Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol 77, 227–237.[CrossRef]
    [Google Scholar]
  20. Lam, N. & Sugden, B. ( 2003; ). CD40 and its viral mimic, LMP1: similar means to different ends. Cell Signal 15, 9–16.[CrossRef]
    [Google Scholar]
  21. Liden, J., Palmberg, L., Okret, S. & Larsson, K. ( 2003; ). Organic dust activates NF-κB in lung epithelial cells. Respir Med 97, 882–892.[CrossRef]
    [Google Scholar]
  22. Ludwig, S., Planz, O., Pleschka, S. & Wolff, T. ( 2003; ). Influenza-virus-induced signaling cascades: targets for antiviral therapy? Trends Mol Med 9, 46–52.[CrossRef]
    [Google Scholar]
  23. Mitchell, T. & Sugden, B. ( 1995; ). Stimulation of NF-κB-mediated transcription by mutant derivatives of the latent membrane protein of Epstein–Barr virus. J Virol 69, 2968–2976.
    [Google Scholar]
  24. Nimmerjahn, F., Kobelt, D., Steinkasserer, A., Menke, A., Hobom, G., Behrends, U., Bornkamm, G. W. & Mautner, J. ( 2003; ). Efficient generation and expansion of antigen-specific CD4+ T cells by recombinant influenza viruses. Eur J Immunol 33, 3331–3341.[CrossRef]
    [Google Scholar]
  25. Pajic, A., Spitkovsky, D., Christoph, B. & 9 other authors ( 2000; ). Cell cycle activation by c-myc in a burkitt lymphoma model cell line. Int J Cancer 87, 787–793.[CrossRef]
    [Google Scholar]
  26. Palese, P., Basler, C. F. & Garcia-Sastre, A. ( 2002; ). The makings of a killer. Nat Med 8, 927–928.[CrossRef]
    [Google Scholar]
  27. Pierce, J. W., Schoenleber, R., Jesmok, G., Best, J., Moore, S. A., Collins, T. & Gerritsen, M. E. ( 1997; ). Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 272, 21096–21103.[CrossRef]
    [Google Scholar]
  28. Pleschka, S., Wolff, T., Ehrhardt, C., Hobom, G., Planz, O., Rapp, U. R. & Ludwig, S. ( 2001; ). Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol 3, 301–305.[CrossRef]
    [Google Scholar]
  29. Polack, A., Hortnagel, K., Pajic, A. & 7 other authors ( 1996; ). c-Myc activation renders proliferation of Epstein–Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc Natl Acad Sci U S A 93, 10411–10416.[CrossRef]
    [Google Scholar]
  30. Root, C. N., Wills, E. G., McNair, L. L. & Whittaker, G. R. ( 2000; ). Entry of influenza viruses into cells is inhibited by a highly specific protein kinase C inhibitor. J Gen Virol 81, 2697–2705.
    [Google Scholar]
  31. Scholtissek, C. & Muller, K. ( 1991; ). Failure to obtain drug-resistant variants of influenza virus after treatment with inhibiting doses of 3-deazaadenosine and H7. Arch Virol 119, 111–118.[CrossRef]
    [Google Scholar]
  32. Scholtissek, C., Stech, J., Krauss, S. & Webster, R. G. ( 2002; ). Cooperation between the hemagglutinin of avian viruses and the matrix protein of human influenza A viruses. J Virol 76, 1781–1786.[CrossRef]
    [Google Scholar]
  33. Seo, S. H., Hoffmann, E. & Webster, R. G. ( 2002; ). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8, 950–954.[CrossRef]
    [Google Scholar]
  34. Shortridge, K. F., Gao, P., Guan, Y., Ito, T., Kawaoka, Y., Markwell, D., Takada, A. & Webster, R. G. ( 2000; ). Interspecies transmission of influenza viruses: H5N1 virus and a Hong Kong SAR perspective. Vet Microbiol 74, 141–147.[CrossRef]
    [Google Scholar]
  35. Sieczkarski, S. B., Brown, H. A. & Whittaker, G. R. ( 2003; ). Role of protein kinase C βII in influenza virus entry via late endosomes. J Virol 77, 460–469.[CrossRef]
    [Google Scholar]
  36. Tashiro, M., Ciborowski, P., Klenk, H. D., Pulverer, G. & Rott, R. ( 1987; ). Role of Staphylococcus protease in the development of influenza pneumonia. Nature 325, 536–537.[CrossRef]
    [Google Scholar]
  37. Thompson, W. W., Shay, D. K., Weintraub, E., Brammer, L., Cox, N., Anderson, L. J. & Fukuda, K. ( 2003; ). Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA (J Am Med Assoc) 289, 179–186.[CrossRef]
    [Google Scholar]
  38. Wagner, R., Wolff, T., Herwig, A., Pleschka, S. & Klenk, H. D. ( 2000; ). Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol 74, 6316–6323.[CrossRef]
    [Google Scholar]
  39. Wurzer, W. J., Planz, O., Ehrhardt, C., Giner, M., Silberzahn, T., Pleschka, S. & Ludwig, S. ( 2003; ). Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J 22, 2717–2728.[CrossRef]
    [Google Scholar]
  40. Young, L. S., Eliopoulos, A. G., Gallagher, N. J. & Dawson, C. W. ( 1998; ). CD40 and epithelial cells: across the great divide. Immunol Today 19, 502–506.[CrossRef]
    [Google Scholar]
  41. Zimber-Strobl, U., Kempkes, B., Marschall, G., Zeidler, R., Van Kooten, C., Banchereau, J., Bornkamm, G. W. & Hammerschmidt, W. ( 1996; ). Epstein–Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. EMBO J 15, 7070–7078.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79958-0
Loading
/content/journal/jgv/10.1099/vir.0.79958-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error