1887

Abstract

Mechanisms of CXCR4-mediated T lymphocyte apoptosis in human immunodeficiency virus (HIV) infection are poorly understood. The authors used peripheral blood mononuclear cells isolated from HIV type 1-infected subjects and assessed both CD4 and CD8 T cell apoptosis in the presence and absence of CXCR4 blockade by AMD3100. Both CD4 and CD8 T cell apoptosis could be inhibited by CXCR4 blockade, mostly in acquired immunodeficiency syndrome subjects and more weakly in asymptomatic HIV-positive subjects, and depended only partially on the syncytium-inducing/non-syncytium-inducing viral envelope phenotype. Immune activation of CD8, but not CD4, T cells was CXCR4-dependent, resulting in increased T cell apoptosis. In the presence of monocyte-derived macrophages, CXCR4-mediated apoptosis targeted mostly CD8 T cells, with CD4 T cells being more weakly affected. Several immune and viral factors thus play a role in CXCR4-mediated T cell apoptosis in HIV infection: CD4/CD8 phenotype, viral envelope phenotype, T cell activation and T cell–macrophage intercellular contacts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79933-0
2004-06-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851471.html?itemId=/content/journal/jgv/10.1099/vir.0.79933-0&mimeType=html&fmt=ahah

References

  1. Alexander-Miller M. A., Derby M. A., Sarin A., Henkart P. A., Berzofsky J. A. 1998; Supraoptimal peptide–major histocompatibility complex causes a decrease in bc1-2 levels and allows tumor necrosis factor alpha receptor II-mediated apoptosis of cytotoxic T lymphocytes. J Exp Med 188:1391–1399 [CrossRef]
    [Google Scholar]
  2. Algeciras-Schimnich A., Vlahakis S. R., Villasis-Keever A., Gomez T., Heppelmann C. J., Bou G., Paya C. V. 2002; CCR5 mediates Fas- and caspase-8 dependent apoptosis of both uninfected and HIV infected primary human CD4 T cells. AIDS 16:1467–1478 [CrossRef]
    [Google Scholar]
  3. Ameisen J. C., Capron A. 1991; Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today 12:102–105 [CrossRef]
    [Google Scholar]
  4. Ara T., Itoi M., Kawabata K., Egawa T., Tokoyoda K., Sugiyama T., Fujii N., Amagai T., Nagasawa T. 2003; A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 170:4649–4655 [CrossRef]
    [Google Scholar]
  5. Badley A. D., Dockrell D., Simpson M., Schut R., Lynch D. H., Leibson P., Paya C. V. 1997; Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. J Exp Med 185:55–64 [CrossRef]
    [Google Scholar]
  6. Badley A. D., Parato K., Cameron D. W. 7 other authors 1999; Dynamic correlation of apoptosis and immune activation during treatment of HIV infection. Cell Death Differ 6:420–432 [CrossRef]
    [Google Scholar]
  7. Banda N. K., Bernier J., Kurahara D. K., Kurrle R., Haigwood N., Sekaly R. P., Finkel T. H. 1992; Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J Exp Med 176:1099–1106 [CrossRef]
    [Google Scholar]
  8. Baribaud F., Edwards T. G., Sharron M. 7 other authors 2001; Antigenically distinct conformations of CXCR4. J Virol 75:8957–8967 [CrossRef]
    [Google Scholar]
  9. Berger E. A., Murphy P. M., Farber J. M. 1999; Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700 [CrossRef]
    [Google Scholar]
  10. Berndt C., Mopps B., Angermuller S., Gierschik P., Krammer P. H. 1998; CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4+ T cells. Proc Natl Acad Sci U S A 95:12556–12561 [CrossRef]
    [Google Scholar]
  11. Blanco J., Barretina J., Henson G., Bridger G., De Clercq E., Clotet B., Este J. A. 2000; The CXCR4 antagonist AMD3100 efficiently inhibits cell-surface-expressed human immunodeficiency virus type 1 envelope-induced apoptosis. Antimicrob Agents Chemother 44:51–56 [CrossRef]
    [Google Scholar]
  12. Blanco J., Barretina J., Cabrera C., Gutierrez A., Clotet B., Este J. A. 2001; CD4+ and CD8+ T cell death during human immunodeficiency virus infection in vitro. Virology 285:356–365 [CrossRef]
    [Google Scholar]
  13. Bleul C. C., Farzan M., Choe H., Parolin C., Clark-Lewis I., Sodroski J., Springer T. A. 1996; The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833 [CrossRef]
    [Google Scholar]
  14. Caggiari L., Zanussi S., Bortolin M. T., D'Andrea M., Nasti G., Simonelli C., Tirelli U., De Paoli P. 2000; Effects of therapy with highly active anti-retroviral therapy (HAART) and IL-2 on CD4+ and CD8+ lymphocyte apoptosis in HIV+ patients. Clin Exp Immunol 120:101–106 [CrossRef]
    [Google Scholar]
  15. Castro B. A., Weiss C. D., Wiviott L. D., Levy J. A. 1988; Optimal conditions for recovery of the human immunodeficiency virus from peripheral blood mononuclear cells. J Clin Microbiol 26:2371–2376
    [Google Scholar]
  16. Davis C. B., Dikic I., Unutmaz D., Hill C. M., Arthos J., Siani M. A., Thompson D. A., Schlessinger J., Littman D. R. 1997; Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 186:1793–1798 [CrossRef]
    [Google Scholar]
  17. de Clercq E., Schols D. 2001; Inhibition of HIV infection by CXCR4 and CCR5 chemokine receptor antagonists. Antivir Chem Chemother 12:19–31
    [Google Scholar]
  18. de Oliveira Pinto L. M., Garcia S., Lecoeur H., Rapp C., Gougeon M. L. 2002a; Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3. Blood 99:1666–1675 [CrossRef]
    [Google Scholar]
  19. de Oliveira Pinto L. M., Lecoeur H., Ledru E., Rapp C., Patey O., Gougeon M. L. 2002b; Lack of control of T cell apoptosis under HAART. Influence of therapy regimen in vivo and in vitro. AIDS 16:329–339 [CrossRef]
    [Google Scholar]
  20. Donzella G. A., Schols D., Lin S. W. 8 other authors 1998; AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 4:72–77 [CrossRef]
    [Google Scholar]
  21. Doranz B. J., Grovit-Ferbas K., Sharron M. P., Mao S. H., Goetz M. B., Daar E. S., Doms R. W., O'Brien W. A. 1997; A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J Exp Med 186:1395–1400 [CrossRef]
    [Google Scholar]
  22. Dyrhol-Riise A. M., Ohlsson M., Skarstein K., Nygaard S. J., Olofsson J., Jonsson R., Asjo B. 2001; T cell proliferation and apoptosis in HIV-1-infected lymphoid tissue: impact of highly active antiretroviral therapy. Clin Immunol 101:180–191 [CrossRef]
    [Google Scholar]
  23. Fauci A. S. 1996; Host factors and the pathogenesis of HIV-induced disease. Nature 384:529–534 [CrossRef]
    [Google Scholar]
  24. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877 [CrossRef]
    [Google Scholar]
  25. Finkel T. H., Tudor-Williams G., Banda N. K., Cotton M. F., Curiel T., Monks C., Baba T. W., Ruprecht R. M., Kupfer A. 1995; Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1:129–134 [CrossRef]
    [Google Scholar]
  26. Gandhi R. T., Chen B. K., Straus S. E., Dale J. K., Lenardo M. J., Baltimore D. 1998; HIV-1 directly kills CD4+ T cells by a Fas-independent mechanism. J Exp Med 187:1113–1122 [CrossRef]
    [Google Scholar]
  27. Giorgi J. V., Hultin L. E., McKeating J. A. 9 other authors 1999; Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179:859–870 [CrossRef]
    [Google Scholar]
  28. Glushakova S., Grivel J. C., Fitzgerald W., Sylwester A., Zimmerberg J., Margolis L. B. 1998; Evidence for the HIV-1 phenotype switch as a causal factor in acquired immunodeficiency. Nat Med 4:346–349 [CrossRef]
    [Google Scholar]
  29. Hatse S., Princen K., Bridger G., De Clercq E., Schols D. 2002; Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527:255–262 [CrossRef]
    [Google Scholar]
  30. Herbein G., Mahlknecht U., Batliwalla F., Gregersen P., Pappas T., Butler J., O'Brien W. A., Verdin E. 1998a; Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 395:189–194 [CrossRef]
    [Google Scholar]
  31. Herbein G., Van Lint C., Lovett J. L., Verdin E. 1998b; Distinct mechanisms trigger apoptosis in human immunodeficiency virus type 1-infected and in uninfected bystander T lymphocytes. J Virol 72:660–670
    [Google Scholar]
  32. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. 1995; Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126 [CrossRef]
    [Google Scholar]
  33. Koot M., Vos A. H., Keet R. P., de Goede R. E., Dercksen M. W., Terpstra F. G., Coutinho R. A., Miedema F., Tersmette M. 1992; HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS 6:49–54 [CrossRef]
    [Google Scholar]
  34. Labrosse B., Brelot A., Heveker N., Sol N., Schols D., de Clercq E., Alizon M. 1998; Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J Virol 72:6381–6388
    [Google Scholar]
  35. Lapham C. K., Romantseva T., Petricoin E., King L. R., Manischewitz J., Zaitseva M. B., Golding H. 2002; CXCR4 heterogeneity in primary cells: possible role of ubiquitination. J Leukoc Biol 72:1206–1214
    [Google Scholar]
  36. Loetscher M., Geiser T., O'Reilly T., Zwahlen R., Baggiolini M., Moser B. 1994; Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 269:232–237
    [Google Scholar]
  37. Matthys P., Hatse S., Vermeire K., Wuyts A., Bridger G., Henson G. W., de Clercq E., Billiau A., Schols D. 2001; AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN- γ receptor-deficient mice. J Immunol 167:4686–4692 [CrossRef]
    [Google Scholar]
  38. Mueller Y. M., de Rosa S. C., Hutton J. A., Witek J., Roederer M., Altman J. D., Katsikis P. D. 2001; Increased CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells. Immunity 15:871–882 [CrossRef]
    [Google Scholar]
  39. Nagasawa T., Kikutani H., Kishimoto T. 1994; Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 91:2305–2309 [CrossRef]
    [Google Scholar]
  40. Nagasawa T., Hirota S., Tachibana K., Takakura N., Nishikawa S., Kitamura Y., Yoshida N., Kikutani H., Kishimoto T. 1996; Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638 [CrossRef]
    [Google Scholar]
  41. Nanki T., Lipsky P. E. 2000; Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol 164:5010–5014 [CrossRef]
    [Google Scholar]
  42. Olsson J., Poles M., Spetz A. L., Elliott J., Hultin L., Giorgi J., Andersson J., Anton P. 2000; Human immunodeficiency virus type 1 infection is associated with significant mucosal inflammation characterized by increased expression of CCR5, CXCR4, and beta-chemokines. J Infect Dis 182:1625–1635 [CrossRef]
    [Google Scholar]
  43. Oyaizu N., Adachi Y., Hashimoto F., McCloskey T. W., Hosaka N., Kayagaki N., Yagita H., Pahwa S. 1997; Monocytes express Fas ligand upon CD4 cross-linking and induce CD4+ T cell apoptosis: a possible mechanism of bystander cell death in HIV infection. J Immunol 158:2456–2463
    [Google Scholar]
  44. Roggero R., Robert-Hebmann V., Harrington S., Roland J., Vergne L., Jaleco S., Devaux C., Biard-Piechaczyk M. 2001; Binding of human immunodeficiency virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c-mediated apoptosis independently of Fas signaling. J Virol 75:7637–7650 [CrossRef]
    [Google Scholar]
  45. Saag M. S., Holodniy M., Kuritzkes D. R. 7 other authors 1996; HIV viral load markers in clinical practice. Nat Med 2:625–629 [CrossRef]
    [Google Scholar]
  46. Tateyama M., Oyaizu N., McCloskey T. W., Than S., Pahwa S. 2000; CD4 T lymphocytes are primed to express Fas ligand by CD4 cross-linking and to contribute to CD8 T-cell apoptosis via Fas/FasL death signaling pathway. Blood 96:195–202
    [Google Scholar]
  47. Tilling R., Kinloch S., Goh L. E. 8 other authors 2002; Parallel decline of CD8+/CD38++ T cells and viraemia in response to quadruple highly active antiretroviral therapy in primary HIV infection. AIDS 16:589–596 [CrossRef]
    [Google Scholar]
  48. Vlahakis S. R., Algeciras-Schimnich A., Bou G., Heppelmann C. J., Villasis-Keever A., Collman R. C., Paya C. V. 2001; Chemokine-receptor activation by env determines the mechanism of death in HIV-infected and uninfected T lymphocytes. J Clin Invest 107:207–215 [CrossRef]
    [Google Scholar]
  49. Wei X., Ghosh S. K., Taylor M. E. 7 other authors 1995; Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122 [CrossRef]
    [Google Scholar]
  50. Westendorp M. O., Frank R., Ochsenbauer C., Stricker K., Dhein J., Walczak H., Debatin K. M., Krammer P. H. 1995; Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500 [CrossRef]
    [Google Scholar]
  51. Zheng L., Fisher G., Miller R. E., Peschon J., Lynch D. H., Lenardo M. J. 1995; Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377:348–351 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79933-0
Loading
/content/journal/jgv/10.1099/vir.0.79933-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error