1887

Abstract

Mechanisms of CXCR4-mediated T lymphocyte apoptosis in human immunodeficiency virus (HIV) infection are poorly understood. The authors used peripheral blood mononuclear cells isolated from HIV type 1-infected subjects and assessed both CD4 and CD8 T cell apoptosis in the presence and absence of CXCR4 blockade by AMD3100. Both CD4 and CD8 T cell apoptosis could be inhibited by CXCR4 blockade, mostly in acquired immunodeficiency syndrome subjects and more weakly in asymptomatic HIV-positive subjects, and depended only partially on the syncytium-inducing/non-syncytium-inducing viral envelope phenotype. Immune activation of CD8, but not CD4, T cells was CXCR4-dependent, resulting in increased T cell apoptosis. In the presence of monocyte-derived macrophages, CXCR4-mediated apoptosis targeted mostly CD8 T cells, with CD4 T cells being more weakly affected. Several immune and viral factors thus play a role in CXCR4-mediated T cell apoptosis in HIV infection: CD4/CD8 phenotype, viral envelope phenotype, T cell activation and T cell–macrophage intercellular contacts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79933-0
2004-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851471.html?itemId=/content/journal/jgv/10.1099/vir.0.79933-0&mimeType=html&fmt=ahah

References

  1. Alexander-Miller, M. A., Derby, M. A., Sarin, A., Henkart, P. A. & Berzofsky, J. A. ( 1998; ). Supraoptimal peptide–major histocompatibility complex causes a decrease in bc1-2 levels and allows tumor necrosis factor alpha receptor II-mediated apoptosis of cytotoxic T lymphocytes. J Exp Med 188, 1391–1399.[CrossRef]
    [Google Scholar]
  2. Algeciras-Schimnich, A., Vlahakis, S. R., Villasis-Keever, A., Gomez, T., Heppelmann, C. J., Bou, G. & Paya, C. V. ( 2002; ). CCR5 mediates Fas- and caspase-8 dependent apoptosis of both uninfected and HIV infected primary human CD4 T cells. AIDS 16, 1467–1478.[CrossRef]
    [Google Scholar]
  3. Ameisen, J. C. & Capron, A. ( 1991; ). Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today 12, 102–105.[CrossRef]
    [Google Scholar]
  4. Ara, T., Itoi, M., Kawabata, K., Egawa, T., Tokoyoda, K., Sugiyama, T., Fujii, N., Amagai, T. & Nagasawa, T. ( 2003; ). A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 170, 4649–4655.[CrossRef]
    [Google Scholar]
  5. Badley, A. D., Dockrell, D., Simpson, M., Schut, R., Lynch, D. H., Leibson, P. & Paya, C. V. ( 1997; ). Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. J Exp Med 185, 55–64.[CrossRef]
    [Google Scholar]
  6. Badley, A. D., Parato, K., Cameron, D. W. & 7 other authors ( 1999; ). Dynamic correlation of apoptosis and immune activation during treatment of HIV infection. Cell Death Differ 6, 420–432.[CrossRef]
    [Google Scholar]
  7. Banda, N. K., Bernier, J., Kurahara, D. K., Kurrle, R., Haigwood, N., Sekaly, R. P. & Finkel, T. H. ( 1992; ). Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J Exp Med 176, 1099–1106.[CrossRef]
    [Google Scholar]
  8. Baribaud, F., Edwards, T. G., Sharron, M. & 7 other authors ( 2001; ). Antigenically distinct conformations of CXCR4. J Virol 75, 8957–8967.[CrossRef]
    [Google Scholar]
  9. Berger, E. A., Murphy, P. M. & Farber, J. M. ( 1999; ). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17, 657–700.[CrossRef]
    [Google Scholar]
  10. Berndt, C., Mopps, B., Angermuller, S., Gierschik, P. & Krammer, P. H. ( 1998; ). CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4+ T cells. Proc Natl Acad Sci U S A 95, 12556–12561.[CrossRef]
    [Google Scholar]
  11. Blanco, J., Barretina, J., Henson, G., Bridger, G., De Clercq, E., Clotet, B. & Este, J. A. ( 2000; ). The CXCR4 antagonist AMD3100 efficiently inhibits cell-surface-expressed human immunodeficiency virus type 1 envelope-induced apoptosis. Antimicrob Agents Chemother 44, 51–56.[CrossRef]
    [Google Scholar]
  12. Blanco, J., Barretina, J., Cabrera, C., Gutierrez, A., Clotet, B. & Este, J. A. ( 2001; ). CD4+ and CD8+ T cell death during human immunodeficiency virus infection in vitro. Virology 285, 356–365.[CrossRef]
    [Google Scholar]
  13. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J. & Springer, T. A. ( 1996; ). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833.[CrossRef]
    [Google Scholar]
  14. Caggiari, L., Zanussi, S., Bortolin, M. T., D'Andrea, M., Nasti, G., Simonelli, C., Tirelli, U. & De Paoli, P. ( 2000; ). Effects of therapy with highly active anti-retroviral therapy (HAART) and IL-2 on CD4+ and CD8+ lymphocyte apoptosis in HIV+ patients. Clin Exp Immunol 120, 101–106.[CrossRef]
    [Google Scholar]
  15. Castro, B. A., Weiss, C. D., Wiviott, L. D. & Levy, J. A. ( 1988; ). Optimal conditions for recovery of the human immunodeficiency virus from peripheral blood mononuclear cells. J Clin Microbiol 26, 2371–2376.
    [Google Scholar]
  16. Davis, C. B., Dikic, I., Unutmaz, D., Hill, C. M., Arthos, J., Siani, M. A., Thompson, D. A., Schlessinger, J. & Littman, D. R. ( 1997; ). Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 186, 1793–1798.[CrossRef]
    [Google Scholar]
  17. de Clercq, E. & Schols, D. ( 2001; ). Inhibition of HIV infection by CXCR4 and CCR5 chemokine receptor antagonists. Antivir Chem Chemother 12, 19–31.
    [Google Scholar]
  18. de Oliveira Pinto, L. M., Garcia, S., Lecoeur, H., Rapp, C. & Gougeon, M. L. ( 2002a; ). Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3. Blood 99, 1666–1675.[CrossRef]
    [Google Scholar]
  19. de Oliveira Pinto, L. M., Lecoeur, H., Ledru, E., Rapp, C., Patey, O. & Gougeon, M. L. ( 2002b; ). Lack of control of T cell apoptosis under HAART. Influence of therapy regimen in vivo and in vitro. AIDS 16, 329–339.[CrossRef]
    [Google Scholar]
  20. Donzella, G. A., Schols, D., Lin, S. W. & 8 other authors ( 1998; ). AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 4, 72–77.[CrossRef]
    [Google Scholar]
  21. Doranz, B. J., Grovit-Ferbas, K., Sharron, M. P., Mao, S. H., Goetz, M. B., Daar, E. S., Doms, R. W. & O'Brien, W. A. ( 1997; ). A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J Exp Med 186, 1395–1400.[CrossRef]
    [Google Scholar]
  22. Dyrhol-Riise, A. M., Ohlsson, M., Skarstein, K., Nygaard, S. J., Olofsson, J., Jonsson, R. & Asjo, B. ( 2001; ). T cell proliferation and apoptosis in HIV-1-infected lymphoid tissue: impact of highly active antiretroviral therapy. Clin Immunol 101, 180–191.[CrossRef]
    [Google Scholar]
  23. Fauci, A. S. ( 1996; ). Host factors and the pathogenesis of HIV-induced disease. Nature 384, 529–534.[CrossRef]
    [Google Scholar]
  24. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. ( 1996; ). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.[CrossRef]
    [Google Scholar]
  25. Finkel, T. H., Tudor-Williams, G., Banda, N. K., Cotton, M. F., Curiel, T., Monks, C., Baba, T. W., Ruprecht, R. M. & Kupfer, A. ( 1995; ). Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1, 129–134.[CrossRef]
    [Google Scholar]
  26. Gandhi, R. T., Chen, B. K., Straus, S. E., Dale, J. K., Lenardo, M. J. & Baltimore, D. ( 1998; ). HIV-1 directly kills CD4+ T cells by a Fas-independent mechanism. J Exp Med 187, 1113–1122.[CrossRef]
    [Google Scholar]
  27. Giorgi, J. V., Hultin, L. E., McKeating, J. A. & 9 other authors ( 1999; ). Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179, 859–870.[CrossRef]
    [Google Scholar]
  28. Glushakova, S., Grivel, J. C., Fitzgerald, W., Sylwester, A., Zimmerberg, J. & Margolis, L. B. ( 1998; ). Evidence for the HIV-1 phenotype switch as a causal factor in acquired immunodeficiency. Nat Med 4, 346–349.[CrossRef]
    [Google Scholar]
  29. Hatse, S., Princen, K., Bridger, G., De Clercq, E. & Schols, D. ( 2002; ). Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527, 255–262.[CrossRef]
    [Google Scholar]
  30. Herbein, G., Mahlknecht, U., Batliwalla, F., Gregersen, P., Pappas, T., Butler, J., O'Brien, W. A. & Verdin, E. ( 1998a; ). Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 395, 189–194.[CrossRef]
    [Google Scholar]
  31. Herbein, G., Van Lint, C., Lovett, J. L. & Verdin, E. ( 1998b; ). Distinct mechanisms trigger apoptosis in human immunodeficiency virus type 1-infected and in uninfected bystander T lymphocytes. J Virol 72, 660–670.
    [Google Scholar]
  32. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M. & Markowitz, M. ( 1995; ). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126.[CrossRef]
    [Google Scholar]
  33. Koot, M., Vos, A. H., Keet, R. P., de Goede, R. E., Dercksen, M. W., Terpstra, F. G., Coutinho, R. A., Miedema, F. & Tersmette, M. ( 1992; ). HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS 6, 49–54.[CrossRef]
    [Google Scholar]
  34. Labrosse, B., Brelot, A., Heveker, N., Sol, N., Schols, D., de Clercq, E. & Alizon, M. ( 1998; ). Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J Virol 72, 6381–6388.
    [Google Scholar]
  35. Lapham, C. K., Romantseva, T., Petricoin, E., King, L. R., Manischewitz, J., Zaitseva, M. B. & Golding, H. ( 2002; ). CXCR4 heterogeneity in primary cells: possible role of ubiquitination. J Leukoc Biol 72, 1206–1214.
    [Google Scholar]
  36. Loetscher, M., Geiser, T., O'Reilly, T., Zwahlen, R., Baggiolini, M. & Moser, B. ( 1994; ). Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 269, 232–237.
    [Google Scholar]
  37. Matthys, P., Hatse, S., Vermeire, K., Wuyts, A., Bridger, G., Henson, G. W., de Clercq, E., Billiau, A. & Schols, D. ( 2001; ). AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-γ receptor-deficient mice. J Immunol 167, 4686–4692.[CrossRef]
    [Google Scholar]
  38. Mueller, Y. M., de Rosa, S. C., Hutton, J. A., Witek, J., Roederer, M., Altman, J. D. & Katsikis, P. D. ( 2001; ). Increased CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells. Immunity 15, 871–882.[CrossRef]
    [Google Scholar]
  39. Nagasawa, T., Kikutani, H. & Kishimoto, T. ( 1994; ). Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 91, 2305–2309.[CrossRef]
    [Google Scholar]
  40. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H. & Kishimoto, T. ( 1996; ). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638.[CrossRef]
    [Google Scholar]
  41. Nanki, T. & Lipsky, P. E. ( 2000; ). Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol 164, 5010–5014.[CrossRef]
    [Google Scholar]
  42. Olsson, J., Poles, M., Spetz, A. L., Elliott, J., Hultin, L., Giorgi, J., Andersson, J. & Anton, P. ( 2000; ). Human immunodeficiency virus type 1 infection is associated with significant mucosal inflammation characterized by increased expression of CCR5, CXCR4, and beta-chemokines. J Infect Dis 182, 1625–1635.[CrossRef]
    [Google Scholar]
  43. Oyaizu, N., Adachi, Y., Hashimoto, F., McCloskey, T. W., Hosaka, N., Kayagaki, N., Yagita, H. & Pahwa, S. ( 1997; ). Monocytes express Fas ligand upon CD4 cross-linking and induce CD4+ T cell apoptosis: a possible mechanism of bystander cell death in HIV infection. J Immunol 158, 2456–2463.
    [Google Scholar]
  44. Roggero, R., Robert-Hebmann, V., Harrington, S., Roland, J., Vergne, L., Jaleco, S., Devaux, C. & Biard-Piechaczyk, M. ( 2001; ). Binding of human immunodeficiency virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c-mediated apoptosis independently of Fas signaling. J Virol 75, 7637–7650.[CrossRef]
    [Google Scholar]
  45. Saag, M. S., Holodniy, M., Kuritzkes, D. R. & 7 other authors ( 1996; ). HIV viral load markers in clinical practice. Nat Med 2, 625–629.[CrossRef]
    [Google Scholar]
  46. Tateyama, M., Oyaizu, N., McCloskey, T. W., Than, S. & Pahwa, S. ( 2000; ). CD4 T lymphocytes are primed to express Fas ligand by CD4 cross-linking and to contribute to CD8 T-cell apoptosis via Fas/FasL death signaling pathway. Blood 96, 195–202.
    [Google Scholar]
  47. Tilling, R., Kinloch, S., Goh, L. E. & 8 other authors ( 2002; ). Parallel decline of CD8+/CD38++ T cells and viraemia in response to quadruple highly active antiretroviral therapy in primary HIV infection. AIDS 16, 589–596.[CrossRef]
    [Google Scholar]
  48. Vlahakis, S. R., Algeciras-Schimnich, A., Bou, G., Heppelmann, C. J., Villasis-Keever, A., Collman, R. C. & Paya, C. V. ( 2001; ). Chemokine-receptor activation by env determines the mechanism of death in HIV-infected and uninfected T lymphocytes. J Clin Invest 107, 207–215.[CrossRef]
    [Google Scholar]
  49. Wei, X., Ghosh, S. K., Taylor, M. E. & 7 other authors ( 1995; ). Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122.[CrossRef]
    [Google Scholar]
  50. Westendorp, M. O., Frank, R., Ochsenbauer, C., Stricker, K., Dhein, J., Walczak, H., Debatin, K. M. & Krammer, P. H. ( 1995; ). Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375, 497–500.[CrossRef]
    [Google Scholar]
  51. Zheng, L., Fisher, G., Miller, R. E., Peschon, J., Lynch, D. H. & Lenardo, M. J. ( 1995; ). Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79933-0
Loading
/content/journal/jgv/10.1099/vir.0.79933-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error