1887

Abstract

Quasispecies shifts are essential for the development of persistent hepatitis C virus (HCV) infection. Naturally occurring sequence variations in the 5′ non-translated region (NTR) of the virus could lead to changes in protein expression levels, reflecting selective forces on the virus. The extreme 5′ end of the virus' genome, containing signals essential for replication, is followed by an internal ribosomal entry site (IRES) essential for protein translation as well as replication. The 5′ NTR is highly conserved and has a complex RNA secondary structure consisting of several stem–loops. This report analyses the quasispecies distribution of the 5′ NTR of an HCV genotype 1b clinical isolate and found a number of sequences differing from the consensus sequence. The consensus sequence, as well as a major variant located in stem–loop IIIa of the IRES, was investigated using self-replicating HCV RNA molecules in human hepatoma cells. The stem–loop IIIa mutation, which is predicted to disrupt the stem structure, showed slightly lower translation efficiency but was severely impaired in the colony formation of selectable HCV replicons. Interestingly, during selection of colonies supporting autonomous replication, mutations emerged that restored the base pairing in the stem–loop. Recloning of these altered IRESs confirmed that these second site revertants were more efficient in colony formation. In conclusion, naturally occurring variants in the HCV 5′ NTR can lead to changes in their replication ability. Furthermore, IRES quasispecies evolution was observed under the selective pressure of the replicon system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79924-0
2004-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/7/vir851859.html?itemId=/content/journal/jgv/10.1099/vir.0.79924-0&mimeType=html&fmt=ahah

References

  1. Banerjee R., Dasgupta A. 2001; Specific interaction of hepatitis C virus protease/helicase NS3 with the 3′-terminal sequences of viral positive- and negative-strand RNA. J Virol 75:1708–1721 [CrossRef]
    [Google Scholar]
  2. Bartenschlager R., Lohmann V. 2000; Replication of hepatitis C virus. J Gen Virol 81:1631–1648
    [Google Scholar]
  3. Bartenschlager R., Kaul A., Sparacio S. 2003; Replication of the hepatitis C virus in cell culture. Antiviral Res 60:91–102 [CrossRef]
    [Google Scholar]
  4. Collier A. J., Tang S. X., Elliott R. M. 1998; Translation efficiencies of the 5′ untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. J Gen Virol 79:2359–2366
    [Google Scholar]
  5. Collier A. J., Gallego J., Klinck R., Cole P. T., Harris S. J., Harrison G. P., Aboul-ela F., Varani G., Walker S. 2002; A conserved RNA structure within the HCV IRES eIF3-binding site. Nat Struct Biol 9:375–380
    [Google Scholar]
  6. Farci P., Purcell R. H. 2000; Clinical significance of hepatitis C virus genotypes and quasispecies. Semin Liver Dis 20:103–126
    [Google Scholar]
  7. Fletcher S. P., Jackson R. J. 2002; Pestivirus Internal Ribosome Entry Site (IRES) structure and function: elements in the 5′ untranslated region important for IRES function. J Virol 76:5024–5033 [CrossRef]
    [Google Scholar]
  8. Friebe P., Bartenschlager R. 2002; Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76:5326–5338 [CrossRef]
    [Google Scholar]
  9. Friebe P., Lohmann V., Krieger N., Bartenschlager R. 2001; Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J Virol 75:12047–12057 [CrossRef]
    [Google Scholar]
  10. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126 [CrossRef]
    [Google Scholar]
  11. Hellen C. U. T., Sarnow P. 2001; Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612 [CrossRef]
    [Google Scholar]
  12. Honda M., Rijnbrand R., Abell G., Kim D. S., Lemon S. M. 1999; Natural variation in translational activities of the 5′ nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA–RNA interaction outside of the internal ribosomal entry site. J Virol 73:4941–4951
    [Google Scholar]
  13. Kieft J. S., Zhou K. H., Jubin R., Murray M. G., Lau J. Y. N., Doudna J. A. 1999; The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol 292:513–529 [CrossRef]
    [Google Scholar]
  14. Kieft J. S., Zhou K. H., Jubin R., Doudna J. A. 2001; Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7:194–206 [CrossRef]
    [Google Scholar]
  15. Kieft J. S., Zhou K. H., Grech A., Jubin R., Doudna J. A. 2002; Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nat Struct Biol 9:370–374
    [Google Scholar]
  16. Krieger N., Lohmann V., Bartenschlager R. 2001; Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol 75:4614–4624 [CrossRef]
    [Google Scholar]
  17. Kurreck J. 2003; Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644 [CrossRef]
    [Google Scholar]
  18. Laporte J., Malet I., Andrieu T. 7 other authors 2000; Comparative analysis of translation efficiencies of hepatitis C virus 5′ untranslated regions among intraindividual quasispecies present in chronic infection: opposite behaviors depending on cell type. J Virol 74:10827–10833 [CrossRef]
    [Google Scholar]
  19. Laporte J., Bain C., Maurel P., Inchauspe G., Agut H., Cahour A. 2003; Differential distribution and internal translation efficiency of hepatitis C virus quasispecies present in dendritic and liver cells. Blood 101:52–57 [CrossRef]
    [Google Scholar]
  20. Lerat H., Shimizu Y. K., Lemon S. M. 2000; Cell type-specific enhancement of hepatitis C virus internal ribosome entry site-directed translation due to 5′ nontranslated region substitutions selected during passage of virus in lymphoblastoid cells. J Virol 74:7024–7031 [CrossRef]
    [Google Scholar]
  21. Lohmann V., Korner F., Koch J. O., Herian U., Theilmann L., Bartenschlager R. 1999; Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113 [CrossRef]
    [Google Scholar]
  22. Lu M., Kruppenbacher J., Roggendorf M. 2000; The importance of the quasispecies nature of hepatitis C virus (HCV) for the evolution of HCV populations in patients: study on a single source outbreak of HCV infection. Arch Virol 145:2201–2210 [CrossRef]
    [Google Scholar]
  23. Lukavsky P. J., Otto G. A., Lancaster A. M., Sarnow P., Puglisi J. D. 2000; Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat Struct Biol 7:1105–1110 [CrossRef]
    [Google Scholar]
  24. Lukavsky P. J., Kim I., Otto G. A., Puglisi J. D. 2003; Structure of HCV IRES domain II determined by NMR. Nat Struct Biol 10:1033–1038 [CrossRef]
    [Google Scholar]
  25. Maruyama I. N., Rakow T. L., Maruyama H. I. 1995; Crace – a simple method for identification of the 5′-end of messenger-RNAs. Nucleic Acids Res 23:3796–3797 [CrossRef]
    [Google Scholar]
  26. Pawlotsky J. M. 2003; The nature of interferon-alpha resistance in hepatitis C virus infection. Curr Opin Infect Dis 16:587–592 [CrossRef]
    [Google Scholar]
  27. Quarleri J. F., Robertson B. H., Mathet V. L., Feld M., Espinola L., Requeijo M. P., Mando O., Carballal G., Oubina J. R. 2000; Genomic and phylogenetic analysis of hepatitis C virus isolates from Argentine patients: a six-year retrospective study. J Clin Microbiol 38:4560–4568
    [Google Scholar]
  28. Reusken C. B. E. M., Dalebout T. J., Eerligh P., Bredenbeek P. J., Spaan W. J. 2003; Analysis of hepatitis C virus/classical swine fever virus chimeric 5′NTRs: sequences within the hepatitis C virus IRES are required for viral RNA replication. J Gen Virol 84:1761–1769 [CrossRef]
    [Google Scholar]
  29. Rijnbrand R., Bredenbeek P., van der Straaten T., Whetter L., Inchauspe G., Lemon S., Spaan W. 1995; Almost the entire 5′ non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett 365:115–119 [CrossRef]
    [Google Scholar]
  30. Schuster C., Isel C., Imbert I., Ehresmann C., Marquet R., Kieny M. P. 2002; Secondary structure of the 3′ terminus of hepatitis C virus minus-strand RNA. J Virol 76:8058–8068 [CrossRef]
    [Google Scholar]
  31. Smith R. M., Walton C. M., Wu C. H., Wu G. Y. 2002; Secondary structure and hybridization accessibility of hepatitis C virus 3′-terminal sequences. J Virol 76:9563–9574 [CrossRef]
    [Google Scholar]
  32. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A. 1992; Internal ribosome entry site within hepatitis C virus RNA. J Virol 66:1476–1483
    [Google Scholar]
  33. Wang C., Sarnow P., Siddiqui A. 1993; Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67:3338–3344
    [Google Scholar]
  34. Young K. C., Lindsay K. L., Lee K. J., Liu W. C., He J. W., Milstein S. L., Lai M. M. C. 2003; Identification of a ribavirin-resistant NS5B mutation of hepatitis C virus during ribavirin monotherapy. Hepatology 38:869–878 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79924-0
Loading
/content/journal/jgv/10.1099/vir.0.79924-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error