1887

Abstract

Small interfering RNA (siRNA)-induced RNA degradation has been used recently as an antivirus agent to inhibit specific virus replication. This report shows that 21 nt duplexes of siRNA of the influenza virus M gene can cause specific inhibition of influenza virus matrix (M1) protein expression in transfected 293T cells. Furthermore, it is shown that a lentivirus vector can be used to effectively deliver M gene siRNAs into Madin–Darby canine kidney cells and can cause specific inhibition of M1 protein expression and influenza virus replication. Therefore, lentivirus-mediated delivery of siRNA and gene silencing can be used in studying the specific functions of virus genes in replication and may have a potential therapeutic application.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79906-0
2004-07-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/7/vir851877.html?itemId=/content/journal/jgv/10.1099/vir.0.79906-0&mimeType=html&fmt=ahah

References

  1. Abbas-Terki, T., Blanco-Bose, W., Déglon, N., Pralong, W. & Aebischer, P. ( 2002; ). Lentiviral-mediated RNA interference. Hum Gene Ther 13, 2197–2201.[CrossRef]
    [Google Scholar]
  2. Adelman, Z. N., Sanchez-Vargas, I., Travanty, E. A., Carlson, J. O., Beaty, B. J., Blair, C. D. & Olson, K. E. ( 2002; ). RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J Virol 76, 12925–12933.[CrossRef]
    [Google Scholar]
  3. Ahlquist, P. ( 2002; ). RNA-dependent RNA polymerase, viruses, and RNA silencing. Science 296, 1270–1273.[CrossRef]
    [Google Scholar]
  4. Akkina, R., Banerjea, A., Bai, J., Anderson, J., Li, M.-J. & Rossi, J. ( 2003; ). siRNAs, ribozymes and RNA decoys in modeling stem cell-based gene therapy for HIV/AIDS. Anticancer Res 23, 1997–2005.
    [Google Scholar]
  5. An, D. S., Xin, Y., Mao, S. H., Morizono, K., Kung, S. K. P. & Chen, I. S. Y. ( 2003; ). Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum Gene Ther 14, 1207–1212.[CrossRef]
    [Google Scholar]
  6. Bitko, V. & Barik, S. ( 2001; ). Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol 1, 34–44.[CrossRef]
    [Google Scholar]
  7. Bogenhagen, D. F., Sakonju, S. & Brown, D. D. ( 1980; ). A control region in the center of the 5S RNA gene directs specific initiation of transcription. II. The 3′ border of the region. Cell 19, 27–35.[CrossRef]
    [Google Scholar]
  8. Brummelkamp, T. R., Bernards, R. & Agami, R. ( 2002; ). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.[CrossRef]
    [Google Scholar]
  9. Carmichael, G. G. ( 2002; ). Silencing viruses with RNA. Nature 418, 379–380.[CrossRef]
    [Google Scholar]
  10. Chen, Y., Du, D., Wu, J., Chan, C.-P., Tan, Y., Kung, H. & He, M.-L. ( 2003; ). Inhibition of hepatitis B virus replication by stably expressed shRNA. Biochem Biophys Res Commun 311, 398–404.[CrossRef]
    [Google Scholar]
  11. Devroe, E. & Silver, P. A. ( 2002; ). Retrovirus-delivered siRNA. BMC Biotechnol 2, 15–19.[CrossRef]
    [Google Scholar]
  12. Donzé, O. & Picard, D. ( 2002; ). RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res 30, e46.[CrossRef]
    [Google Scholar]
  13. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. & Tuschl, T. ( 2001; ). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.[CrossRef]
    [Google Scholar]
  14. Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. ( 2002; ). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213.[CrossRef]
    [Google Scholar]
  15. Ge, Q., McManus, M. T., Nguyen, T., Shen, C.-H., Sharp, P. A., Eisen, H. N. & Chen, J. ( 2003; ). RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A 100, 2718–2723.[CrossRef]
    [Google Scholar]
  16. Gitlin, L., Karelsky, S. & Andino, R. ( 2002; ). Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430–434.[CrossRef]
    [Google Scholar]
  17. Hall, A. H. S. & Alexander, K. A. ( 2003; ). RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77, 6066–6069.[CrossRef]
    [Google Scholar]
  18. Hamasaki, K., Nakao, K., Matsumoto, K., Ichikawa, T., Ishikawa, H. & Eguchi, K. ( 2003; ). Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS Lett 543, 51–54.[CrossRef]
    [Google Scholar]
  19. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108–6113.[CrossRef]
    [Google Scholar]
  20. Hu, W.-Y., Myers, C. P., Kilzer, J. M., Pfaff, S. L. & Bushman, F. D. ( 2002; ). Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 12, 1301–1311.[CrossRef]
    [Google Scholar]
  21. Hui, E. K.-W. & Nayak, D. P. ( 2001; ). Role of ATP in influenza virus budding. Virology 290, 329–341.[CrossRef]
    [Google Scholar]
  22. Hui, E. K.-W. & Nayak, D. P. ( 2002; ). Role of G protein and protein kinase signalling in influenza virus budding in MDCK cells. J Gen Virol 83, 3055–3066.
    [Google Scholar]
  23. Hui, E. K.-W., Barman, S., Yang, T. Y. & Nayak, D. P. ( 2003a; ). Basic residues of the helix six domain of influenza virus M1 involved in nuclear translocation of M1 can be replaced by PTAP and YPDL late assembly domain motifs. J Virol 77, 7078–7092.[CrossRef]
    [Google Scholar]
  24. Hui, E. K.-W., Ralston, K., Judd, A. K. & Nayak, D. P. ( 2003b; ). Conserved cysteine and histidine residues in the putative zinc finger motif of the influenza A virus M1 protein are not critical for influenza virus replication. J Gen Virol 84, 3105–3113.[CrossRef]
    [Google Scholar]
  25. Kapadia, S. B., Brideau-Andersen, A. & Chisari, F. V. ( 2003; ). Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A 100, 2014–2018.[CrossRef]
    [Google Scholar]
  26. Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M.-J., Ehsani, A., Salvaterra, P. & Rossi, J. ( 2002; ). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20, 500–505.
    [Google Scholar]
  27. Li, H., Li, W. X. & Ding, S. W. ( 2002; ). Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321.[CrossRef]
    [Google Scholar]
  28. Lindenbach, B. D. & Rice, C. M. ( 2002; ). RNAi targeting an animal virus: news from the front. Mol Cell 9, 925–927.[CrossRef]
    [Google Scholar]
  29. Matta, H., Hozayev, B., Tomar, R., Chugh, P. & Chaudhary, P. M. ( 2003; ). Use of lentiviral vectors for delivery of small interfering RNA. Cancer Biol Ther 2, 206–210.[CrossRef]
    [Google Scholar]
  30. McCown, M., Diamond, M. S. & Pekosz, A. ( 2003; ). The utility of siRNA transcripts produced by RNA polymerase I in down regulating viral gene expression and replication of negative- and positive-strand RNA viruses. Virology 313, 514–524.[CrossRef]
    [Google Scholar]
  31. Miyagishi, M. & Taira, K. ( 2002; ). U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20, 497–500.[CrossRef]
    [Google Scholar]
  32. Nayak, D. P. & Hui, E. K.-W. ( 2002; ). Assembly and morphogenesis of influenza viruses. Recent Res Develop Virol 4, 35–54.
    [Google Scholar]
  33. Pacchia, A. L., Mukherjee, S. & Dougherty, J. P. ( 2003; ). Choice and use of appropriate packaging cell types. Methods Mol Biol 229, 29–42.
    [Google Scholar]
  34. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. ( 2002; ). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16, 948–958.[CrossRef]
    [Google Scholar]
  35. Paul, C. P., Good, P. D., Winer, I. & Engelke, D. R. ( 2002; ). Effective expression of small interfering RNA in human cells. Nat Biotechnol 20, 505–508.[CrossRef]
    [Google Scholar]
  36. Paule, M. R. & White, R. J. ( 2000; ). Transcription by RNA polymerases I and III. Nucleic Acids Res 28, 1283–1298.[CrossRef]
    [Google Scholar]
  37. Pickford, A. S. & Cogoni, C. ( 2003; ). RNA-mediated gene silencing. Cell Mol Life Sci 60, 871–882.
    [Google Scholar]
  38. Pomerantz, R. J. ( 2002; ). RNA interference meets HIV-1: will silence be golden? Nat Med 8, 659–660.[CrossRef]
    [Google Scholar]
  39. Qin, X.-F., An, D. S., Chen, I. S. Y. & Baltimore, D. ( 2003; ). Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 100, 183–188.[CrossRef]
    [Google Scholar]
  40. Saksela, K. ( 2003; ). Human viruses under attack by small inhibitory RNA. Trends Microbiol 11, 345–347.[CrossRef]
    [Google Scholar]
  41. Scherr, M., Morgan, M. A. & Eder, M. ( 2003; ). Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem 10, 245–256.[CrossRef]
    [Google Scholar]
  42. Sen, A., Steele, R., Ghosh, A. K., Basu, A., Ray, R. & Ray, R. B. ( 2003; ). Inhibition of hepatitis C virus protein expression by RNA interference. Virus Res 96, 27–35.[CrossRef]
    [Google Scholar]
  43. Shen, C., Buck, A. K., Liu, X., Winkler, M. & Reske, S. N. ( 2003; ). Gene silencing by adenovirus-delivered siRNA. FEBS Lett 539, 111–114.[CrossRef]
    [Google Scholar]
  44. Shi, Y. ( 2003; ). Mammalian RNAi for the masses. Trends Genet 19, 9–12.[CrossRef]
    [Google Scholar]
  45. Stephenson, J. ( 2003; ). Giving HIV the silent treatment and other strategies examined at conference. JAMA 289, 1494–1495.[CrossRef]
    [Google Scholar]
  46. Stewart, S. A., Dykxhoorn, D. M., Palliser, D. & 9 other authors ( 2003; ). Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501.[CrossRef]
    [Google Scholar]
  47. Sui, G., Soohoo, C., Affar, E. B., Gay, F., Shi, Y., Forrester, W. C. & Shi, Y. ( 2002; ). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99, 5515–5520.[CrossRef]
    [Google Scholar]
  48. Tiscornia, G., Singer, O., Ikawa, M. & Verma, I. M. ( 2003; ). A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A 100, 1844–1848.[CrossRef]
    [Google Scholar]
  49. Wall, N. R. & Shi, Y. ( 2003; ). Small RNA: can RNA interference be exploited for therapy? Lancet 362, 1401–1403.[CrossRef]
    [Google Scholar]
  50. Wiebusch, L., Truss, M. & Hagemeier, C. ( 2004; ). Inhibition of human cytomegalovirus replication by small interfering RNAs. J Gen Virol 85, 179–184.[CrossRef]
    [Google Scholar]
  51. Xia, H., Mao, Q., Paulson, H. L. & Davidson, B. L. ( 2002; ). siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20, 1006–1010.[CrossRef]
    [Google Scholar]
  52. Yang, G., Thompson, J. A., Fang, B. & Liu, J. ( 2003; ). Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumorgrowth in a model of human ovarian cancer. Oncogene 22, 5694–5701.[CrossRef]
    [Google Scholar]
  53. Zhang, R., Guo, Z., Lu, J. & 18 other authors ( 2003; ). Inhibiting severe acute respiratory syndrome-associated coronavirus by small interfering RNA. Chin Med J (Engl) 116, 1262–1264.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79906-0
Loading
/content/journal/jgv/10.1099/vir.0.79906-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error