1887

Abstract

(CPV) expresses the serpin (ine roteinase hibitor) CrmA, an anti-inflammatory, anti-apoptotic protein required for production of red pocks on chicken chorioallantoic membranes (CAMs). , CrmA inhibits several caspases and granzyme B. Altering the critical P1-aspartate in the CrmA reactive centre loop to alanine resulted in a virus (CPV-CrmA-D303A) that resembled CPV deleted for CrmA (CPVΔCrmA : : lacZ); on CAMs it produced white, inflammatory pocks with activated caspase-3 and reduced virus yields, suggesting that CrmA activities are mediated via proteinase inhibition. CrmA in CPV was replaced with SERP2 from (MYX) or baculovirus P35, which inhibit similar proteinases . SERP2 and P35 each blocked caspase-3-mediated apoptosis but were unable to control inflammation of CAMs. However, SERP2 and P35 restored virus yields, indicating that the decreased virus titres seen with CPVΔCrmA : : lacZ resulted from apoptosis rather than inflammation. To compare the activities of CrmA and SERP2 further, rabbits were infected with MYX recombinant viruses. Intradermal infection of rabbits with MYX was uniformly lethal, generating raised primary lesions and many secondary lesions. In contrast, deletion of SERP2 from MYX (MYXΔSERP2 : : lacZ) caused little mortality and produced flat primary lesions with few secondary lesions. Replacement of SERP2 with CrmA (MYXΔSERP2 : : CrmA) resulted in partial complementation with flat primary lesions, many secondary lesions and death in 70 % of the rabbits. Therefore, CrmA and SERP2 were not functionally interchangeable during infection of CAMs or rabbits, implying that these serpins have activities that are not evident from biochemical studies with human caspases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79905-0
2004-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851267.html?itemId=/content/journal/jgv/10.1099/vir.0.79905-0&mimeType=html&fmt=ahah

References

  1. Ahmad M., Srinivasula S. M., Wang L., Litwack G., Fernandes-Alnemri T., Alnemri E. S. 1997; Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35. J Biol Chem 272:1421–1424
    [Google Scholar]
  2. Alcami A., Smith G. L. 1992; A soluble receptor for interleukin-1 β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167
    [Google Scholar]
  3. Alcami A., Smith G. L. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 69:4633–4639
    [Google Scholar]
  4. Alcami A., Smith G. L. 1996; A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci U S A 93:11029–11034
    [Google Scholar]
  5. Born T. L., Morrison L. A., Esteban D. J., VandenBos T., Thebeau L. G., Chen N. H., Spriggs M. K., Sims J. E., Buller R. M. L. 2000; A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J Immunol 164:3246–3254
    [Google Scholar]
  6. Calderara S., Xiang Y., Moss B. 2001; Orthopoxvirus IL-18 binding proteins: affinities and antagonist activities. Virology 279:22–26
    [Google Scholar]
  7. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: coexpression of β -galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5:3403–3409
    [Google Scholar]
  8. Chen C. H., Gobel T. W., Kubota T., Cooper M. D. 1994; T cell development in the chicken. Poult Sci 73:1012–1018
    [Google Scholar]
  9. Deeb B. J., Digiacomo R. F., Bernard B. L., Silbernagel S. M. 1990; Pasteurella multocida and Bordetella bronchiseptica infections in rabbits. J Clin Microbiol 28:70–75
    [Google Scholar]
  10. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111
    [Google Scholar]
  11. Garcia-Calvo M., Peterson E. P., Leiting B., Ruel R., Nicholson D. W., Thornberry N. A. 1998; Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613
    [Google Scholar]
  12. Ghayur T., Banerjee S., Hugunin M. 11 other authors 1997; Caspase-1 processes IFN- γ -inducing factor and regulates LPS-induced IFN- γ production. Nature 386:619–623
    [Google Scholar]
  13. Gu Y., Kuida K., Tsutsui H. 14 other authors 1997; Activation of interferon- γ inducing factor mediated by interleukin-1 β converting enzyme. Science 275:206–209
    [Google Scholar]
  14. Hay B. A., Wolff T., Rubin G. M. 1994; Expression of baculovirus P35 prevents cell death in Drosophila . Development 120:2121–2129
    [Google Scholar]
  15. Irving J. A., Steenbakkers P. J. M., Lesk A. M., den Camp H. J. M. O., Pike R. N., Whisstock J. C. 2002; Serpins in prokaryotes. Mol Biol Evol 19:1881–1890
    [Google Scholar]
  16. Izquierdo M., Grandien A., Criado L. M., Robles S., Leonardo E., Albar J. P., de Buitrago G. G., Martinez A. 1999; Blocked negative selection of developing T cells in mice expressing the baculovirus p35 caspase inhibitor. EMBO J 18:156–166
    [Google Scholar]
  17. Kettle S., Blake N. W., Law K. M., Smith G. L. 1995; Vaccinia virus serpins B13R (SPI-2) and B22R (SPI-1) encode M r 38·5 and 40K, intracellular polypeptides that do not affect virus virulence in a murine intranasal model. Virology 206:136–147
    [Google Scholar]
  18. Kettle S., Alcami A., Khanna A., Ehret R., Jassoy C., Smith G. L. 1997; Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1 β -converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1 β -induced fever. J Gen Virol 78:677–685
    [Google Scholar]
  19. Komiyama T., Ray C. A., Pickup D. J., Howard A. D., Thornberry N. A., Peterson E. P., Salvesen G. 1994; Inhibition of interleukin-1 β converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 269:19331–19337
    [Google Scholar]
  20. Macen J., Takahashi A., Moon K. B., Nathaniel R., Turner P. C., Moyer R. W. 1998; Activation of caspases in pig kidney cells infected with wild-type and CrmA/SPI-2 mutants of cowpox and rabbitpox viruses. J Virol 72:3524–3533
    [Google Scholar]
  21. Masteller E. L., Pharr G. T., Funk P. E., Thompson C. B. 1997; Avian B cell development. Int Rev Immunol 15:185–206
    [Google Scholar]
  22. Merrill G. A., Bretthauer R., Wright-Hicks J., Allen R. C. 2001; Effects of inhibitors on chicken polymorphonuclear leukocyte oxygenation activity measured by use of selective chemiluminigenic substrates. Comp Med 51:16–21
    [Google Scholar]
  23. Messud-Petit F., Gelfi J., Delverdier M., Amardeilh M. F., Py R., Sutter G., Bertagnoli S. 1998; Serp2, an inhibitor of the interleukin-1 β -converting enzyme, is critical in the pathobiology of myxoma virus. J Virol 72:7830–7839
    [Google Scholar]
  24. Moss B. 1996; Poxviridae : the viruses and their replication. In Fields Virology , 3rd edn. pp  2637–2671 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  25. Moss B., Shisler J. L. 2001; Immunology 101 at poxvirus U: immune evasion genes. Semin Immunol 13:59–66
    [Google Scholar]
  26. Mossman K., Upton C., Buller R. M., McFadden G. 1995; Species specificity of ectromelia virus and vaccinia virus interferon- γ binding proteins. Virology 208:762–769
    [Google Scholar]
  27. Mullbacher A., Wallich R., Moyer R. W., Simon M. M. 1999; Poxvirus-encoded serpins do not prevent cytolytic T cell-mediated recovery from primary infections. J Immunol 162:7315–7321
    [Google Scholar]
  28. Palumbo G. J., Pickup D. J., Fredrickson T. N., McIntyre L. J., Buller R. M. 1989; Inhibition of an inflammatory response is mediated by a 38-kDa protein of cowpox virus. Virology 172:262–273
    [Google Scholar]
  29. Palumbo G. J., Buller R. M., Glasgow W. C. 1994; Multigenic evasion of inflammation by poxviruses. J Virol 68:1737–1749
    [Google Scholar]
  30. Petit F., Bergagnoli S., Gelfi J., Fassy F., Boucraut-Baralon C., Milon A. 1996; Characterization of a myxoma virus-encoded serpin-like protein with activity against interleukin-1 β converting enzyme. J Virol 70:5860–5866
    [Google Scholar]
  31. Pickup D. J., Ink B. S., Hu W., Ray C. A., Joklik W. K. 1986; Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proc Natl Acad Sci U S A 83:7698–7702
    [Google Scholar]
  32. Quan L. T., Caputo A., Bleackley R. C., Pickup D. J., Salvesen G. S. 1995; Granzyme B is inhibited by the cowpox virus serpin cytokine response modifier A. J Biol Chem 270:10377–10379
    [Google Scholar]
  33. Ray C. A., Pickup D. J. 1996; The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene. Virology 217:384–391
    [Google Scholar]
  34. Reading P. C., Smith G. L. 2003; Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 77:9960–9968
    [Google Scholar]
  35. Silverman G. A., Bird P. I., Carrell R. W. 12 other authors 2001; The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276:33293–33296
    [Google Scholar]
  36. Smith V. P., Alcami A. 2002; Inhibition of interferons by ectromelia virus. J Virol 76:1124–1134
    [Google Scholar]
  37. Smith V. P., Bryant N. A., Alcami A. 2000; Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81:1223–1230
    [Google Scholar]
  38. Spriggs M. K., Hruby D. E., Maliszeswki C. R., Pickup D. J., Sims J. E., Buller R. M. L., VanSlyke J. 1992; Vaccinia and cowpox viruses encode a novel secreted interleukin-1 binding protein. Cell 71:145–152
    [Google Scholar]
  39. Swaan P. W., Knoell D. L., Helsper F., Wewers M. D. 2001; Sequential processing of human ProIL-1 β by caspase-1 and subsequent folding determined by a combined in vitro and in silico approach. Pharm Res 18:1083–1090
    [Google Scholar]
  40. Symons J. A., Adams E., Tscharke D. C., Reading P. C., Waldmann H., Smith G. L. 2002a; The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83:2833–2844
    [Google Scholar]
  41. Symons J. A., Tscharke D. C., Price N., Smith G. L. 2002b; A study of the vaccinia virus interferon- γ receptor and its contribution to virus virulence. J Gen Virol 83:1953–1964
    [Google Scholar]
  42. Tewari M., Telford W. G., Miller R. A., Dixit V. M. 1995; CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis. J Biol Chem 270:22705–22708
    [Google Scholar]
  43. Thompson J. P., Turner P. C., Ali A. N., Crenshaw B. C., Moyer R. W. 1993; The effects of serpin gene mutations on the distinctive pathobiology of cowpox and rabbitpox virus following intranasal inoculation of Balb/c mice. Virology 197:328–338
    [Google Scholar]
  44. Thornberry N. A., Bull H. G., Calaycay J. R. 26 other authors 1992; A novel heterodimeric cysteine protease is required for interleukin-1 β processing in monocytes. Nature 356:768–774
    [Google Scholar]
  45. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986
    [Google Scholar]
  46. Turner P. C., Moyer R. W. 1992; A PCR-based method for manipulation of the vaccinia virus genome that eliminates the need for cloning. Biotechniques 13:764–771
    [Google Scholar]
  47. Turner P. C., Sancho M. C., Thoennes S. R., Caputo A., Bleackley R. C., Moyer R. W. 1999; Myxoma virus Serp2 is a weak inhibitor of granzyme B and interleukin-1 β -converting enzyme in vitro and unlike CrmA cannot block apoptosis in cowpox virus-infected cells. J Virol 73:6394–6404
    [Google Scholar]
  48. Upton C., Mossman K., McFadden G. 1992; Encoding of a homolog of the IFN- γ receptor by myxoma virus. Science 258:1369–1372
    [Google Scholar]
  49. Verardi P. H., Jones L. A., Aziz F. H., Ahmad S., Yilma T. D. 2001; Vaccinia virus vectors with an inactivated gamma interferon receptor homolog gene (B8R) are attenuated in vivo without a concomitant reduction in immunogenicity. J Virol 75:11–18
    [Google Scholar]
  50. Weining K. C., Sick C., Kaspers B., Staeheli P. 1998; A chicken homolog of mammalian interleukin-1 β : cDNA cloning and purification of active recombinant protein. Eur J Biochem 258:994–1000
    [Google Scholar]
  51. Xiang Y., Moss B. 2001a; Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins. J Virol 75:9947–9954
    [Google Scholar]
  52. Xiang Y., Moss B. 2001b; Determination of the functional epitopes of human interleukin-18-binding protein by site-directed mutagenesis. J Biol Chem 276:17380–17386
    [Google Scholar]
  53. Xue D., Horvitz H. R. 1995; Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377:248–251
    [Google Scholar]
  54. Zhou Q., Snipas S., Orth K., Muzio M., Dixit V. M., Salvesen G. S. 1997; Target protease specificity of the viral serpin CrmA – analysis of five caspases. J Biol Chem 272:7797–7800
    [Google Scholar]
  55. Zhou Q., Krebs J. F., Snipas S. J., Price A., Alnemri E. S., Tomaselli K. J., Salvesen G. S. 1998; Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37:10757–10765
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79905-0
Loading
/content/journal/jgv/10.1099/vir.0.79905-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error