The rat cytomegalovirus homologue of parvoviral genes, r127, encodes a nuclear protein with single- and double-stranded DNA-binding activity that is dispensable for virus replication Free

Abstract

An intriguing feature of the rat cytomegalovirus (RCMV) genome is open reading frame (ORF) r127, which shows similarity to the genes of parvoviruses as well as the U94 genes of human herpesvirus type 6A (HHV-6A) and 6B (HHV-6B). Counterparts of these genes have not been found in other herpesviruses. Here, it is shown that the r127 gene is transcribed during the early and late phases of virus replication as an unspliced 1·1 kb transcript containing the complete r127 ORF. Transcripts of r127 were also detected in various organs of RCMV-infected rats at 1 week post-infection (p.i.), but only in the salivary gland at 4 months p.i. Using rabbit polyclonal antibodies raised against the r127-encoded protein (pr127), pr127 was found to be expressed as early as 12 h p.i. within the nuclei of RCMV-infected cells . Expression of pr127 was also observed within the nuclei of cells in various organs of RCMV-infected rats at 3 weeks p.i. Moreover, pr127 was demonstrated to bind single- as well as double-stranded DNA. Finally, an RCMV r127 deletion mutant (RCMVΔr127) was generated, in which the r127 ORF was disrupted. This deletion mutant, however, was shown to replicate with a similar efficiency as wild-type RCMV (wt RCMV), both and . Taken together, it is concluded that the RCMV r127 gene encodes a nuclear protein with single- and double-stranded DNA-binding activity that is dispensable for virus replication, not only , but also during the acute phase of infection .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79864-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/7/vir852001.html?itemId=/content/journal/jgv/10.1099/vir.0.79864-0&mimeType=html&fmt=ahah

References

  1. Araujo J. C., Doniger J., Kashanchi F., Hermonat P. L., Thompson J., Rosenthal L. J. 1995; Human herpesvirus 6A ts suppresses both transformation by H- ras and transcription by the H- ras and human immunodeficiency virus type 1 promoters. J Virol 69:4933–4940
    [Google Scholar]
  2. Araujo J. C., Doniger J., Stoppler H., Sadaie M. R., Rosenthal L. J. 1997; Cell lines containing and expressing the human herpesvirus 6A ts gene are protected from both H- ras and BPV-1 transformation. Oncogene 14:937–943 [CrossRef]
    [Google Scholar]
  3. Beisser P. S., Vink C., van Dam J. G., Grauls G., Vanherle S. J. V., Bruggeman C. A. 1998; The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72:2352–2363
    [Google Scholar]
  4. Beisser P. S., Grauls G., Bruggeman C. A., Vink C. 1999; Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73:7218–7230
    [Google Scholar]
  5. Beisser P. S., Kloover J. S., Grauls G. E. L. M., Blok M. J., Bruggeman C. A., Vink C. 2000; The r144 major histocompatibility complex class I-like gene of rat cytomegalovirus is dispensable for both acute and long-term infection in the immunocompromised host. J Virol 74:1045–1050 [CrossRef]
    [Google Scholar]
  6. Berns K. I. 1996; Parvoviridae : the viruses and their replication. In Fields Virology . , 3rd edn. vol 2 pp  2173–2197 Edited by Fields B. N., Knipe D. M., Howley P. M., Chanock R. M., Melnick J. L., Monath T. P., Roizman B., Straus S. E. Philadelphia, PA: Lippincott-Raven;
  7. Beuken E., Grauls G., Bruggeman C. A., Vink C. 1999; The rat cytomegalovirus R32 gene encodes a virion-associated protein that elicits a strong humoral immune response in infected rats. J Gen Virol 80:2719–2728
    [Google Scholar]
  8. Bruggeman C. A., Meijer H., Dormans P. H. J., Debie W. M. H., Grauls G. E. L. M., van Boven C. P. A. 1982; Isolation of a cytomegalovirus-like agent from wild rats. Arch Virol 73:231–241 [CrossRef]
    [Google Scholar]
  9. Bruggeman C. A., Meijer H., Bosman F., van Boven C. P. A. 1985; Biology of rat cytomegalovirus infection. Intervirology 24:1–9 [CrossRef]
    [Google Scholar]
  10. Bruning J. H., Debie W. H. M., Dormans P. H. J., Meijer H., Bruggeman C. A. 1987; The development and characterization of monoclonal antibodies against rat cytomegalovirus induced antigens. Arch Virol 94:55–70 [CrossRef]
    [Google Scholar]
  11. Chee M. S., Bankier A. T., Beck S. 12 other authors 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169
    [Google Scholar]
  12. Dhepakson P., Mori Y., Jiang Y. B., Huang H. L., Akkapaiboon P., Okuno T., Yamanishi K. 2002; Human herpesvirus-6 rep/U94 gene product has single-stranded DNA-binding activity. J Gen Virol 83:847–854
    [Google Scholar]
  13. Dominguez G., Dambaugh T. R., Stamey F. R., Dewhurst S., Inoue N., Pellett P. E. 1999; Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol 73:8040–8052
    [Google Scholar]
  14. Gauthier E. R., Madison S. D., Michel R. N. 1997; Rapid RNA isolation without the use of commercial kits: application to small tissue samples. Pflugers Arch 433:664–668 [CrossRef]
    [Google Scholar]
  15. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E. D., Efstathiou S., Craxton M., Macaulay H. A. 1995; The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:29–51 [CrossRef]
    [Google Scholar]
  16. Harlow E., Lane D. 1988 In Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Isegawa Y., Mukai T., Nakano K. 10 other authors 1999; Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J Virol 73:8053–8063
    [Google Scholar]
  18. Kaptein S. J. F., Beuken E., Grauls G. E. L. M., Bruggeman C. A., Vink C. 2001; Rat cytomegalovirus open reading frame R44 is an early-late gene that encodes a nuclear protein. Arch Virol 146:2211–2218 [CrossRef]
    [Google Scholar]
  19. Kaptein S. J. F., Beisser P. S., Gruijthuijsen Y. K., Savelkouls K. G. M., van Cleef K. W. R., Beuken E., Grauls G. E. L. M., Bruggeman C. A., Vink C. 2003; The rat cytomegalovirus R78 G protein-coupled receptor gene is required for production of infectious virus in the spleen. J Gen Virol 84:2517–2530 [CrossRef]
    [Google Scholar]
  20. Lukashov V. V., Goudsmit J. 2001; Evolutionary relationships among parvoviruses: virus-host coevolution among autonomous primate parvoviruses and links between adeno-associated and avian parvoviruses. J Virol 75:2729–2740 [CrossRef]
    [Google Scholar]
  21. Meijer H., Dreesen J. C. F. M., van Boven C. P. A. 1986; Molecular cloning and restriction endonuclease mapping of the rat cytomegalovirus genome. J Gen Virol 67:1327–1342 [CrossRef]
    [Google Scholar]
  22. Mori Y., Dhepakson P., Shimamoto T., Ueda K., Gomi Y., Tani H., Matsuura Y., Yamanishi K. 2000; Expression of human herpesvirus 6B rep within infected cells and binding of its gene product to the TATA-binding protein in vitro and in vivo. J Virol 74:6096–6104 [CrossRef]
    [Google Scholar]
  23. Nicholas J. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J Virol 70:5975–5989
    [Google Scholar]
  24. Rapp J. C., Krug L. T., Inoue N., Dambaugh T. R., Pellett P. E. 2000; U94, the human herpesvirus 6 homolog of the parvovirus nonstructural gene, is highly conserved among isolates and is expressed at low mRNA levels as a spliced transcript. Virology 268:504–516 [CrossRef]
    [Google Scholar]
  25. Rawlinson W. D., Farrell H. E., Barrell B. G. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849
    [Google Scholar]
  26. Rotola A., Ravaioli T., Gonelli A., Dewhurst S., Cassai E., Di Luca D. 1998; U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. Proc Natl Acad Sci U S A 95:13911–13916 [CrossRef]
    [Google Scholar]
  27. Speel E. J. M., Schutte B., Wiegant J., Ramaekers F. C. S., Hopman A. H. N. 1992; A novel fluorescence detection method for in situ hybridization, based on the alkaline phosphatase-Fast Red reaction. J Histochem Cytochem 40:1299–1308 [CrossRef]
    [Google Scholar]
  28. Srivastava A., Lusby E. W., Berns K. I. 1983; Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol 45:555–564
    [Google Scholar]
  29. Stals F. S., Bosman F., van Boven C. P. A., Bruggeman C. A. 1990; An animal model for therapeutic intervention studies of CMV infection in the immunocompromised host. Arch Virol 114:91–107 [CrossRef]
    [Google Scholar]
  30. Tatusova T. A., Madden T. L. 1999; blast 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250 [CrossRef]
    [Google Scholar]
  31. Thomson B. J., Efstathiou S., Honess R. W. 1991; Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature 351:78–80 [CrossRef]
    [Google Scholar]
  32. Thomson B. J., Weindler F. W., Gray D., Schwaab V., Heilbronn R. 1994; Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression. Virology 204:304–311 [CrossRef]
    [Google Scholar]
  33. Vink C., Beuken E., Bruggeman C. A. 2000; Complete DNA sequence of the rat cytomegalovirus genome. J Virol 74:7656–7665 [CrossRef]
    [Google Scholar]
  34. Zadori Z., Stefancsik R., Rauch T., Kisary J. 1995; Analysis of the complete nucleotide sequences of goose and muscovy duck parvoviruses indicates common ancestral origin with adeno-associated virus 2. Virology 212:562–573 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79864-0
Loading
/content/journal/jgv/10.1099/vir.0.79864-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed