1887

Abstract

Membrane proteins differentially expressed in human papillomavirus type 16 (HPV-16) E5-transfected HaCaT cells have been identified. Membrane proteins were isolated and separated by two-dimensional gel electrophoresis. Spots showing quantitative differences between E5-transfected and control cells were extracted and the proteins were identified by nanoelectrospray ionization mass spectrometry. A total of 24 spots was analysed. Among the proteins showing differential expression, a decreased amount of calnexin and increased expression of hsp70, proteins both involved in maturation and transport of MHC class I complexes to the plasma membrane, were noticed. These findings correlate with the decreased surface expression of MHC class I molecules described in E5-expressing cells, HPV-positive cervical lesions and cervical carcinomas. These results stress the value of the proteomic approach, as used here in the experimental design, which allows the correlation of changes in host gene expression with biological functions of viral genes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79844-0
2004-06-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851427.html?itemId=/content/journal/jgv/10.1099/vir.0.79844-0&mimeType=html&fmt=ahah

References

  1. Abd el All, H., Rey, A. & Duvillard, P. ( 1998; ). Expression of heat shock protein 70 and c-Myc in cervical carcinoma. Anticancer Res 18, 1533–1536.
    [Google Scholar]
  2. Ashrafi, G. H., Tsirimonaki, E., Marchetti, B., O'Brien, P. M., Sibbet, G. J., Andrei, L. & Campo, M. S. ( 2001; ). Downregulation of MHC class I by bovine papillomavirus E5 oncoprotein. Oncogene 21, 248–259.
    [Google Scholar]
  3. Auvinen, E., Crusius, K., Steuer, B. & Alonso, A. ( 1997; ). The human papillomavirus E5 protein. Int J Oncol 11, 1297–1304.
    [Google Scholar]
  4. Bauer-Hofmann, R., Borghouts, C., Auvinen, E., Bourda, E., Rosl, F. & Alonso, A. ( 1996; ). Genomic cloning and characterization of the nonoccupied allele corresponding to the integration site of human papillomavirus type 16 DNA in the cervical cancer cell line SiHa. Virology 217, 33–41.[CrossRef]
    [Google Scholar]
  5. Bouvard, V., Matlashewski, G., Gu, Z. M., Storey, A. & Banks, L. ( 1994; ). The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology 203, 73–80.[CrossRef]
    [Google Scholar]
  6. Burkhardt, A., Willingham, M., Gay, C., Jeang, K. T. & Schlegel, R. ( 1989; ). The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. Virology 170, 334–339.[CrossRef]
    [Google Scholar]
  7. Campo, M. S. ( 2002; ). Animal models of papillomavirus pathogenesis. Virus Res 89, 249–261.[CrossRef]
    [Google Scholar]
  8. Clifford, G. M., Smith, J. S., Plummer, M., Munoz, N. & Franceschi, S. ( 2003; ). Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88, 63–73.[CrossRef]
    [Google Scholar]
  9. Conrad, M., Bubb, V. J. & Schlegel, R. ( 1993; ). The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol 67, 6170–6178.
    [Google Scholar]
  10. Cromme, F. V., Meijer, C. J., Snijders, P. J., Uyterlinde, A., Kenemans, P., Helmerhorst, T., Stern, P. L., van den Brule, A. J. & Walboomers, J. M. ( 1993; ). Analysis of MHC class I and II expression in relation to presence of HPV genotypes in premalignant and malignant cervical lesions. Br J Cancer 67, 1372–1380.[CrossRef]
    [Google Scholar]
  11. Crusius, K., Auvinen, E., Steuer, B., Gaissert, H. & Alonso, A. ( 1998; ). The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp Cell Res 241, 76–83.[CrossRef]
    [Google Scholar]
  12. DiMaio, D. & Mattoon, D. ( 2001; ). Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 20, 7866–7873.[CrossRef]
    [Google Scholar]
  13. Durst, M., Glitz, D., Schneider, A. & zur Hausen, H. ( 1992; ). Human papillomavirus type 16 (HPV16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 189, 132–140.[CrossRef]
    [Google Scholar]
  14. Faulkner-Valle, G. & Banks, L. ( 1995; ). The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol 76, 1239–1245.[CrossRef]
    [Google Scholar]
  15. Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S. & Mische, S. M. ( 1999; ). Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601–605.[CrossRef]
    [Google Scholar]
  16. Glew, S. S., Connor, M. E., Snijders, P. J., Stanbridge, C. M., Buckley, C. H., Walboomers, J. M., Meijer, C. J. & Stern, P. L. ( 1993; ). HLA expression in pre-invasive cervical neoplasia in relation to human papilloma virus infection. Eur J Cancer 29A, 1963–1970.
    [Google Scholar]
  17. Gromov, P., Ostergaard, M., Gromova, I. & Celis, J. E. ( 2002; ). Human proteomic databases: a powerful resource for functional genomics in health and disease. Prog Biophys Mol Biol 80, 3–22.[CrossRef]
    [Google Scholar]
  18. Kabsch, K. & Alonso, A. ( 2002; ). The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in human keratinocytes by different mechanisms. J Virol 76, 12162–12172.[CrossRef]
    [Google Scholar]
  19. Leechanachai, P., Banks, L., Moreau, F. & Matlashewski, G. ( 1992; ). The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7, 19–25.
    [Google Scholar]
  20. Marchetti, B., Ashrafi, G. H., Tsirimonaki, E., O'Brien, P. M. & Campo, M. S. ( 2002; ). The bovine papillomavirus oncoprotein E5 retains MHC class I molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene 21, 7808–7816.[CrossRef]
    [Google Scholar]
  21. Molloy, M. P., Herbert, B. R., Walsh, B. J., Tyler, M. I., Traini, M., Sanchez, J. C., Hochstrasser, D. F., Williams, K. L. & Gooley, A. A. ( 1998; ). Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19, 837–844.[CrossRef]
    [Google Scholar]
  22. Munger, K. & Howley, P. M. ( 2002; ). Human papillomavirus immortalization and transformation functions. Virus Res 89, 213–228.[CrossRef]
    [Google Scholar]
  23. Oelze, I., Kartenbeck, J., Crusius, K. & Alonso, A. ( 1995; ). Human papillomavirus type 16 E5 protein affects cell–cell communication in an epithelial cell line. J Virol 69, 4489–4494.
    [Google Scholar]
  24. Oetke, C., Auvinen, E., Pawlita, M. & Alonso, A. ( 2000; ). Human papillomavirus type 16 E5 protein localizes to the Golgi apparatus but does not effect cellular glycosylation. Arch Virol 145, 2183–2191.[CrossRef]
    [Google Scholar]
  25. Park, C. S., Joo, I. S., Song, S. Y., Kim, D. S., Bae, D. S. & Lee, J. H. ( 1999; ). An immunohistochemical analysis of heat shock protein 70, p53, and estrogen receptor status in carcinoma of the uterine cervix. Gynecol Oncol 74, 53–60.[CrossRef]
    [Google Scholar]
  26. Pim, D., Collins, M. & Banks, L. ( 1992; ). Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7, 27–32.
    [Google Scholar]
  27. Ritz, U., Momburg, F., Pilch, H., Hubert, C., Maeurer, M. J. & Seliger, B. ( 2001; ). Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma. Int J Oncol 19, 1211–1220.
    [Google Scholar]
  28. Schwarz, E., Freese, U. K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A. & zur Hausen, H. ( 1985; ). Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111–114.[CrossRef]
    [Google Scholar]
  29. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. ( 1996; ). Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68, 850–858.[CrossRef]
    [Google Scholar]
  30. Stoler, M. H., Rhodes, C. R., Withbeck, A., Wolinsky, S. M., Chow, L. T. & Broker, T. R. ( 1992; ). Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol 23, 117–128.[CrossRef]
    [Google Scholar]
  31. Straight, S. W., Hinkle, P. M., Jewers, R. J. & McCance, D. J. ( 1993; ). The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67, 4521–4532.
    [Google Scholar]
  32. Zhang, B., Spandau, D. F. & Roman, A. ( 2002; ). E5 protein of human papillomavirus type 16 protects human foreskin keratinocytes from UV B-irradiation-induced apoptosis. J Virol 76, 220–231.[CrossRef]
    [Google Scholar]
  33. zur Hausen, H. ( 2002; ). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2, 342–350.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79844-0
Loading
/content/journal/jgv/10.1099/vir.0.79844-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error