1887

Abstract

A timely coordination of cellular DNA synthesis and division cycles is governed by the temporal and spatial activation of cyclin-dependent kinases (Cdks). The primary regulation of Cdk activation is through binding to partner cyclin proteins. Several gammaherpesviruses encode a viral homologue of cellular cyclin D, which may function to deregulate host cell cycle progression. One of these is encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) and is called K cyclin or viral cyclin (v-cyclin). v-Cyclin is expressed in most of the malignant cells that are associated with KSHV infection in humans, labelling v-cyclin as a putative viral oncogene. Here are described some of the major structural and functional properties of mammalian cyclin/Cdk complexes, some of which are phenocopied by v-cyclin. In addition, the molecular events leading to orderly progression through the G/S and G/M cell cycle phases are reviewed. This molecular picture serves as a platform on which to explain v-cyclin-specific functional properties. Interesting but largely speculative issues concern the interplay between v-cyclin-mediated cell cycle deregulation and molecular progression of KSHV-associated neoplasms.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79812-0
2004-06-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851347.html?itemId=/content/journal/jgv/10.1099/vir.0.79812-0&mimeType=html&fmt=ahah

References

  1. Alt, J. R., Gladden, A. B. & Diehl, J. A. ( 2002; ). p21Cip1 promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem 277, 8517–8523.[CrossRef]
    [Google Scholar]
  2. Bagui, T. K., Jackson, R. J., Agrawal, D. & Pledger, W. J. ( 2000; ). Analysis of cyclin D3–cdk4 complexes in fibroblasts expressing and lacking p27kip1 and p21cip1. Mol Cell Biol 20, 8748–8757.[CrossRef]
    [Google Scholar]
  3. Baldin, V., Lukas, J., Marcote, M. J., Pagano, M. & Draetta, G. ( 1993; ). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7, 812–821.[CrossRef]
    [Google Scholar]
  4. Bell, S. P. & Dutta, A. ( 2002; ). DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333–374.[CrossRef]
    [Google Scholar]
  5. Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. ( 2003; ). Cdk2 knockout mice are viable. Curr Biol 13, 1775–1785.[CrossRef]
    [Google Scholar]
  6. Bischoff, J. R. & Plowman, G. D. ( 1999; ). The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 9, 454–459.[CrossRef]
    [Google Scholar]
  7. Boshoff, C. & Weiss, R. A. ( 2001; ). Epidemiology and pathogenesis of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond Ser B Biol Sci 356, 517–534.[CrossRef]
    [Google Scholar]
  8. Brown, N. R., Noble, M. E., Endicott, J. A., Garman, E. F., Wakatsuki, S., Mitchell, E., Rasmussen, B., Hunt, T. & Johnson, L. N. ( 1995; ). The crystal structure of cyclin A. Structure 3, 1235–1247.[CrossRef]
    [Google Scholar]
  9. Brown, N. R., Noble, M. E., Endicott, J. A. & Johnson, L. N. ( 1999; ). The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1, 438–443.[CrossRef]
    [Google Scholar]
  10. Carbone, A., Cilia, A. M., Gloghini, A., Capello, D., Todesco, M., Quattrone, S., Volpe, R. & Gaidano, G. ( 1998; ). Establishment and characterization of EBV-positive and EBV-negative primary effusion lymphoma cell lines harbouring human herpesvirus type-8. Br J Haematol 102, 1081–1089.[CrossRef]
    [Google Scholar]
  11. Card, G. L., Knowles, P., Laman, H., Jones, N. & McDonald, N. Q. ( 2000; ). Crystal structure of a gamma-herpesvirus cyclin–cdk complex. EMBO J 19, 2877–2888.[CrossRef]
    [Google Scholar]
  12. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W. & Knowles, D. M. ( 1995; ). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332, 1186–1191.[CrossRef]
    [Google Scholar]
  13. Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M. & Moore, P. S. ( 1994; ). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869.[CrossRef]
    [Google Scholar]
  14. Chang, Y., Moore, P. S., Talbot, S. J., Boshoff, C. H., Zarkowska, T., Godden, K., Paterson, H., Weiss, R. A. & Mittnacht, S. ( 1996; ). Cyclin encoded by KS herpesvirus. Nature 382, 410.[CrossRef]
    [Google Scholar]
  15. Chen, J., Saha, P., Kornbluth, S., Dynlacht, B. D. & Dutta, A. ( 1996; ). Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 16, 4673–4682.
    [Google Scholar]
  16. Cheng, M., Olivier, P., Diehl, J. A., Fero, M., Roussel, M. F., Roberts, J. M. & Sherr, C. J. ( 1999; ). The p21Cip1 and p27Kip1 CDK ‘inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18, 1571–1583.[CrossRef]
    [Google Scholar]
  17. Child, E. S. & Mann, D. J. ( 2001; ). Novel properties of the cyclin encoded by Human Herpesvirus 8 that facilitate exit from quiescence. Oncogene 20, 3311–3322.[CrossRef]
    [Google Scholar]
  18. Ciemerych, M. A., Kenney, A. M., Sicinska, E., Kalaszczynska, I., Bronson, R. T., Rowitch, D. H., Gardner, H. & Sicinski, P. ( 2002; ). Development of mice expressing a single D-type cyclin. Genes Dev 16, 3277–3289.[CrossRef]
    [Google Scholar]
  19. Clurman, B. E., Sheaff, R. J., Thress, K., Groudine, M. & Roberts, J. M. ( 1996; ). Turnover of cyclin E by the ubiquitin–proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10, 1979–1990.[CrossRef]
    [Google Scholar]
  20. Clute, P. & Pines, J. ( 1999; ). Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1, 82–87.[CrossRef]
    [Google Scholar]
  21. De Bondt, H. L., Rosenblatt, J., Jancarik, J., Jones, H. D., Morgan, D. O. & Kim, S. H. ( 1993; ). Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602.[CrossRef]
    [Google Scholar]
  22. den Elzen, N. & Pines, J. ( 2001; ). Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 153, 121–136.[CrossRef]
    [Google Scholar]
  23. Diehl, J. A., Zindy, F. & Sherr, C. J. ( 1997; ). Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin–proteasome pathway. Genes Dev 11, 957–972.[CrossRef]
    [Google Scholar]
  24. Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. ( 1998; ). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12, 3499–3511.[CrossRef]
    [Google Scholar]
  25. Djerbi, M., Screpanti, V., Catrina, A. I., Bogen, B., Biberfeld, P. & Grandien, A. ( 1999; ). The inhibitor of death receptor signaling, FLICE-inhibitory protein, defines a new class of tumor progression factors. J Exp Med 190, 1025–1032.[CrossRef]
    [Google Scholar]
  26. Doxsey, S. J. ( 2001; ). Centrosomes as command centres for cellular control. Nat Cell Biol 3, E105–108.[CrossRef]
    [Google Scholar]
  27. Dunaief, J. L., Strober, B. E., Guha, S., Khavari, P. A., Alin, K., Luban, J., Begemann, M., Crabtree, G. R. & Goff, S. P. ( 1994; ). The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79, 119–130.[CrossRef]
    [Google Scholar]
  28. Dupin, N., Fisher, C., Kellam, P. & 10 other authors ( 1999; ). Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc Natl Acad Sci U S A 96, 4546–4551.[CrossRef]
    [Google Scholar]
  29. el-Deiry, W. S., Tokino, T., Velculescu, V. E. & 7 other authors ( 1993; ). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825.[CrossRef]
    [Google Scholar]
  30. Ellis, M., Chew, Y. P., Fallis, L., Freddersdorf, S., Boshoff, C., Weiss, R. A., Lu, X. & Mittnacht, S. ( 1999; ). Degradation of p27Kip cdk inhibitor triggered by Kaposi's sarcoma virus cyclin–cdk6 complex. EMBO J 18, 644–653.[CrossRef]
    [Google Scholar]
  31. Endicott, J. A., Noble, M. E. & Tucker, J. A. ( 1999; ). Cyclin-dependent kinases: inhibition and substrate recognition. Curr Opin Struct Biol 9, 738–744.[CrossRef]
    [Google Scholar]
  32. Ensoli, B. & Sturzl, M. ( 1998; ). Kaposi's sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. Cytokine Growth Factor Rev 9, 63–83.[CrossRef]
    [Google Scholar]
  33. Fotedar, R., Fitzgerald, P., Rousselle, T., Cannella, D., Doree, M., Msieser, H. & Fotedar, A. ( 1996; ). p21 contains independent binding sites for cyclin and cdk2: both sites are required to inhibit cdk2 kinase activity. Oncogene 12, 2155–2164.
    [Google Scholar]
  34. Friborg, J., Jr, Kong, W., Hottiger, M. O. & Nabel, G. J. ( 1999; ). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889–894.
    [Google Scholar]
  35. Fujimuro, M., Wu, F. Y., ApRhys, C., Kajumbula, H., Young, D. B., Hayward, G. S. & Hayward, S. D. ( 2003; ). A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat Med 9, 300–306.[CrossRef]
    [Google Scholar]
  36. Geley, S., Kramer, E., Gieffers, C., Gannon, J., Peters, J. M. & Hunt, T. ( 2001; ). Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol 153, 137–148.[CrossRef]
    [Google Scholar]
  37. Geng, Y., Yu, Q., Whoriskey, W. & 10 other authors ( 2001; ). Expression of cyclins E1 and E2 during mouse development and in neoplasia. Proc Natl Acad Sci U S A 98, 13138–13143.[CrossRef]
    [Google Scholar]
  38. Geng, Y., Yu, Q., Sicinska, E. & 7 other authors ( 2003; ). Cyclin E ablation in the mouse. Cell 114, 431–443.[CrossRef]
    [Google Scholar]
  39. Gill, P. S., Tsai, Y. C., Rao, A. P., Spruck, C. H., III, Zheng, T., Harrington, W. A., Jr, Cheung, T., Nathwani, B. & Jones, P. A. ( 1998; ). Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc Natl Acad Sci U S A 95, 8257–8261.[CrossRef]
    [Google Scholar]
  40. Godden-Kent, D., Talbot, S. J., Boshoff, C., Chang, Y., Moore, P., Weiss, R. A. & Mittnacht, S. ( 1997; ). The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol 71, 4193–4198.
    [Google Scholar]
  41. Gu, Y., Turck, C. W. & Morgan, D. O. ( 1993; ). Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366, 707–710.[CrossRef]
    [Google Scholar]
  42. Hagting, A., Jackman, M., Simpson, K. & Pines, J. ( 1999; ). Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr Biol 9, 680–689.[CrossRef]
    [Google Scholar]
  43. Harbour, J. W. & Dean, D. C. ( 2000; ). The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14, 2393–2409.[CrossRef]
    [Google Scholar]
  44. Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A. & Dean, D. C. ( 1999; ). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869.[CrossRef]
    [Google Scholar]
  45. Harper, J. W., Elledge, S. J., Keyomarsi, K. & 9 other authors ( 1995; ). Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6, 387–400.[CrossRef]
    [Google Scholar]
  46. Harper, J. W., Burton, J. L. & Solomon, M. J. ( 2002; ). The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 16, 2179–2206.[CrossRef]
    [Google Scholar]
  47. Helin, K., Harlow, E. & Fattaey, A. ( 1993; ). Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol 13, 6501–6508.
    [Google Scholar]
  48. Hinchcliffe, E. H. & Sluder, G. ( 2001; ). ‘It takes two to tango’: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15, 1167–1181.[CrossRef]
    [Google Scholar]
  49. Hitomi, M. & Stacey, D. W. ( 1999; ). Cyclin D1 production in cycling cells depends on ras in a cell-cycle-specific manner. Curr Biol 9, 1075–1084.[CrossRef]
    [Google Scholar]
  50. Hoge, A. T., Hendrickson, S. B. & Burns, W. H. ( 2000; ). Murine gammaherpesvirus 68 cyclin D homologue is required for efficient reactivation from latency. J Virol 74, 7016–7023.[CrossRef]
    [Google Scholar]
  51. Ishida, S., Huang, E., Zuzan, H., Spang, R., Leone, G., West, M. & Nevins, J. R. ( 2001; ). Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21, 4684–4699.[CrossRef]
    [Google Scholar]
  52. Jackman, M., Firth, M. & Pines, J. ( 1995; ). Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J 14, 1646–1654.
    [Google Scholar]
  53. Jackman, M., Kubota, Y., den Elzen, N., Hagting, A. & Pines, J. ( 2002; ). Cyclin A– and cyclin E–Cdk complexes shuttle between the nucleus and the cytoplasm. Mol Biol Cell 13, 1030–1045.[CrossRef]
    [Google Scholar]
  54. Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J. & Pavletich, N. P. ( 1995; ). Mechanism of CDK activation revealed by the structure of a cyclinA–CDK2 complex. Nature 376, 313–320.[CrossRef]
    [Google Scholar]
  55. Jeffrey, P. D., Tong, L. & Pavletich, N. P. ( 2000; ). Structural basis of inhibition of CDK–cyclin complexes by INK4 inhibitors. Genes Dev 14, 3115–3125.[CrossRef]
    [Google Scholar]
  56. Jenner, R. G., Alba, M. M., Boshoff, C. & Kellam, P. ( 2001; ). Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75, 891–902.[CrossRef]
    [Google Scholar]
  57. Judde, J. G., Lacoste, V., Briere, J. & 7 other authors ( 2000; ). Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi's sarcoma and other diseases. J Natl Cancer Inst 92, 729–736.[CrossRef]
    [Google Scholar]
  58. Kaldis, P., Ojala, P. M., Tong, L., Makela, T. P. & Solomon, M. J. ( 2001; ). CAK-independent activation of CDK6 by a viral cyclin. Mol Biol Cell 12, 3987–3999.[CrossRef]
    [Google Scholar]
  59. Katano, H., Sato, Y. & Sata, T. ( 2001; ). Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer 92, 3076–3084.[CrossRef]
    [Google Scholar]
  60. Kennedy, M. M., O'Leary, J. J., Oates, J. L., Lucas, S. B., Howells, D. D., Picton, S. & McGee, J. O. ( 1998; ). Human herpes virus 8 (HHV-8) in Kaposi's sarcoma: lack of association with Bcl-2 and p53 protein expression. Mol Pathol 51, 155–159.[CrossRef]
    [Google Scholar]
  61. Kim, K. K., Chamberlin, H. M., Morgan, D. O. & Kim, S. H. ( 1996; ). Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nat Struct Biol 3, 849–855.[CrossRef]
    [Google Scholar]
  62. Knudsen, E. S. & Wang, J. Y. ( 1997; ). Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol Cell Biol 17, 5771–5783.
    [Google Scholar]
  63. Kobayashi, H., Stewart, E., Poon, R., Adamczewski, J. P., Gannon, J. & Hunt, T. ( 1992; ). Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits. Mol Biol Cell 3, 1279–1294.[CrossRef]
    [Google Scholar]
  64. Kouzarides, T. ( 1999; ). Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9, 40–48.[CrossRef]
    [Google Scholar]
  65. Krek, W., Ewen, M. E., Shirodkar, S., Arany, Z., Kaelin, W. G., Jr & Livingston, D. M. ( 1994; ). Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78, 161–172.[CrossRef]
    [Google Scholar]
  66. Kumagai, A. & Dunphy, W. G. ( 1996; ). Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377–1380.[CrossRef]
    [Google Scholar]
  67. LaBaer, J., Garrett, M. D., Stevenson, L. F., Slingerland, J. M., Sandhu, C., Chou, H. S., Fattaey, A. & Harlow, E. ( 1997; ). New functional activities for the p21 family of CDK inhibitors. Genes Dev 11, 847–862.[CrossRef]
    [Google Scholar]
  68. Lacoste, V., Mauclere, P., Dubreuil, G., Lewis, J., Georges-Courbot, M. C. & Gessain, A. ( 2000; ). KSHV-like herpesviruses in chimps and gorillas. Nature 407, 151–152.[CrossRef]
    [Google Scholar]
  69. Laman, H., Coverley, D., Krude, T., Laskey, R. & Jones, N. ( 2001; ). Viral cyclin–cyclin-dependent kinase 6 complexes initiate nuclear DNA replication. Mol Cell Biol 21, 624–635.[CrossRef]
    [Google Scholar]
  70. Lees, E. M. & Harlow, E. ( 1993; ). Sequences within the conserved cyclin box of human cyclin A are sufficient for binding to and activation of cdc2 kinase. Mol Cell Biol 13, 1194–1201.
    [Google Scholar]
  71. Lew, D. J. & Kornbluth, S. ( 1996; ). Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol 8, 795–804.[CrossRef]
    [Google Scholar]
  72. Li, M., Lee, H., Yoon, D. W., Albrecht, J. C., Fleckenstein, B., Neipel, F. & Jung, J. U. ( 1997; ). Kaposi's sarcoma-associated herpesvirus encodes a functional cyclin. J Virol 71, 1984–1991.
    [Google Scholar]
  73. Lin, J., Reichner, C., Wu, X. & Levine, A. J. ( 1996; ). Analysis of wild-type and mutant p21WAF-1 gene activities. Mol Cell Biol 16, 1786–1793.
    [Google Scholar]
  74. Lukas, J., Herzinger, T., Hansen, K., Moroni, M. C., Resnitzky, D., Helin, K., Reed, S. I. & Bartek, J. ( 1997; ). Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Dev 11, 1479–1492.[CrossRef]
    [Google Scholar]
  75. Lukas, C., Sorensen, C. S., Kramer, E., Santoni-Rugiu, E., Lindeneg, C., Peters, J. M., Bartek, J. & Lukas, J. ( 1999; ). Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401, 815–818.[CrossRef]
    [Google Scholar]
  76. Lundberg, A. S. & Weinberg, R. A. ( 1998; ). Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin–cdk complexes. Mol Cell Biol 18, 753–761.
    [Google Scholar]
  77. Mann, D. J., Child, E. S., Swanton, C., Laman, H. & Jones, N. ( 1999; ). Modulation of p27Kip1 levels by the cyclin encoded by Kaposi's sarcoma-associated herpesvirus. EMBO J 18, 654–663.[CrossRef]
    [Google Scholar]
  78. Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. ( 1999; ). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1, 14–19.[CrossRef]
    [Google Scholar]
  79. Matsushime, H., Roussel, M. F., Ashmun, R. A. & Sherr, C. J. ( 1991; ). Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65, 701–713.[CrossRef]
    [Google Scholar]
  80. Meraldi, P., Honda, R. & Nigg, E. A. ( 2002; ). Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53(−/−) cells. EMBO J 21, 483–492.[CrossRef]
    [Google Scholar]
  81. Meyerson, M. & Harlow, E. ( 1994; ). Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 14, 2077–2086.
    [Google Scholar]
  82. Montaner, S., Sodhi, A., Pece, S., Mesri, E. A. & Gutkind, J. S. ( 2001; ). The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61, 2641–2648.
    [Google Scholar]
  83. Moore, P. S. & Chang, Y. ( 1998; ). Antiviral activity of tumor-suppressor pathways: clues from molecular piracy by KSHV. Trends Genet 14, 144–150.[CrossRef]
    [Google Scholar]
  84. Moore, P. S., Gao, S. J., Dominguez, G. & 7 other authors ( 1996; ). Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J Virol 70, 549–558.
    [Google Scholar]
  85. Moore, J. D., Yang, J., Truant, R. & Kornbluth, S. ( 1999; ). Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol 144, 213–224.[CrossRef]
    [Google Scholar]
  86. Morgan, D. O. ( 1997; ). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13, 261–291.[CrossRef]
    [Google Scholar]
  87. Morgan, D. O. ( 1999; ). Regulation of the APC and the exit from mitosis. Nat Cell Biol 1, E47–53.[CrossRef]
    [Google Scholar]
  88. Muller, H., Bracken, A. P., Vernell, R. & 7 other authors ( 2001; ). E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15, 267–285.[CrossRef]
    [Google Scholar]
  89. Mundt, K. E., Golsteyn, R. M., Lane, H. A. & Nigg, E. A. ( 1997; ). On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun 239, 377–385.[CrossRef]
    [Google Scholar]
  90. Nasmyth, K. ( 2002; ). Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565.[CrossRef]
    [Google Scholar]
  91. Nigg, E. A. ( 1993; ). Targets of cyclin-dependent protein kinases. Curr Opin Cell Biol 5, 187–193.[CrossRef]
    [Google Scholar]
  92. Nigg, E. A. ( 1996; ). Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr Opin Cell Biol 8, 312–317.[CrossRef]
    [Google Scholar]
  93. Noda, A., Ning, Y., Venable, S. F., Pereira-Smith, O. M. & Smith, J. R. ( 1994; ). Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211, 90–98.[CrossRef]
    [Google Scholar]
  94. Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M. & Pagano, M. ( 1995; ). Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 15, 2612–2624.
    [Google Scholar]
  95. Ojala, P. M., Tiainen, M., Salven, P., Veikkola, T., Castanos-Velez, E., Sarid, R., Biberfeld, P. & Makela, T. P. ( 1999; ). Kaposi's sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res 59, 4984–4989.
    [Google Scholar]
  96. Ojala, P. M., Yamamoto, K., Castanos-Velez, E., Biberfeld, P., Korsmeyer, S. J. & Makela, T. P. ( 2000; ). The apoptotic v-cyclin-CDK6 complex phosphorylates and inactivates Bcl-2. Nat Cell Biol 2, 819–825.[CrossRef]
    [Google Scholar]
  97. Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., Barbero, J. L., Malumbres, M. & Barbacid, M. ( 2003; ). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35, 25–31.[CrossRef]
    [Google Scholar]
  98. Parry, D. H. & O'Farrell, P. H. ( 2001; ). The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr Biol 11, 671–683.[CrossRef]
    [Google Scholar]
  99. Paulose-Murphy, M., Ha, N. K., Xiang, C. & 7 other authors ( 2001; ). Transcription program of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J Virol 75, 4843–4853.[CrossRef]
    [Google Scholar]
  100. Pines, J. & Hunter, T. ( 1991; ). Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115, 1–17.[CrossRef]
    [Google Scholar]
  101. Poon, R. Y. & Hunter, T. ( 1995; ). Dephosphorylation of Cdk2 Thr160 by the cyclin-dependent kinase-interacting phosphatase KAP in the absence of cyclin. Science 270, 90–93.[CrossRef]
    [Google Scholar]
  102. Qian, Y. W., Erikson, E., Taieb, F. E. & Maller, J. L. ( 2001; ). The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell 12, 1791–1799.[CrossRef]
    [Google Scholar]
  103. Radkov, S. A., Kellam, P. & Boshoff, C. ( 2000; ). The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma–E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6, 1121–1127.[CrossRef]
    [Google Scholar]
  104. Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R. A. & Dynlacht, B. D. ( 2002; ). E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev 16, 245–256.[CrossRef]
    [Google Scholar]
  105. Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S. & Chang, Y. ( 2001; ). Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 75, 429–438.[CrossRef]
    [Google Scholar]
  106. Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J. & Pavletich, N. P. ( 1996a; ). Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A–Cdk2 complex. Nature 382, 325–331.[CrossRef]
    [Google Scholar]
  107. Russo, A. A., Jeffrey, P. D. & Pavletich, N. P. ( 1996b; ). Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3, 696–700.[CrossRef]
    [Google Scholar]
  108. Russo, J. J., Bohenzky, R. A., Chien, M. C. & 8 other authors ( 1996c; ). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93, 14862–14867.[CrossRef]
    [Google Scholar]
  109. Russo, A. A., Tong, L., Lee, J. O., Jeffrey, P. D. & Pavletich, N. P. ( 1998; ). Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395, 237–243.[CrossRef]
    [Google Scholar]
  110. Sarcevic, B., Lilischkis, R. & Sutherland, R. L. ( 1997; ). Differential phosphorylation of T-47D human breast cancer cell substrates by D1-, D3-, E-, and A-type cyclin–CDK complexes. J Biol Chem 272, 33327–33337.[CrossRef]
    [Google Scholar]
  111. Sarid, R., Olsen, S. J. & Moore, P. S. ( 1999; ). Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv Virus Res 52, 139–232.
    [Google Scholar]
  112. Schulman, B. A., Lindstrom, D. L. & Harlow, E. ( 1998; ). Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci U S A 95, 10453–10458.[CrossRef]
    [Google Scholar]
  113. Schulze-Gahmen, U. & Kim, S. H. ( 2002; ). Structural basis for CDK6 activation by a virus-encoded cyclin. Nat Struct Biol 9, 177–181.
    [Google Scholar]
  114. Schulze-Gahmen, U., Jung, J. U. & Kim, S. H. ( 1999; ). Crystal structure of a viral cyclin, a positive regulator of cyclin-dependent kinase 6. Structure Fold Des 7, 245–254.[CrossRef]
    [Google Scholar]
  115. Sherr, C. J. ( 1993; ). Mammalian G1 cyclins. Cell 73, 1059–1065.
    [Google Scholar]
  116. Sherr, C. J. ( 1996; ). Cancer cell cycles. Science 274, 1672–1677.[CrossRef]
    [Google Scholar]
  117. Sherr, C. J. & Roberts, J. M. ( 1999; ). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13, 1501–1512.[CrossRef]
    [Google Scholar]
  118. Sigrist, S., Jacobs, H., Stratmann, R. & Lehner, C. F. ( 1995; ). Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. EMBO J 14, 4827–4838.
    [Google Scholar]
  119. Singh, P., Coe, J. & Hong, W. ( 1995; ). A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374, 562–565.[CrossRef]
    [Google Scholar]
  120. Soulier, J., Grollet, L., Oksenhendler, E. & 7 other authors ( 1995; ). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276–1280.
    [Google Scholar]
  121. Stewart, Z. A. & Pietenpol, J. A. ( 2001; ). p53 signaling and cell cycle checkpoints. Chem Res Toxicol 14, 243–263.[CrossRef]
    [Google Scholar]
  122. Sugimoto, M., Nakamura, T., Ohtani, N. & 8 other authors ( 1999; ). Regulation of CDK4 activity by a novel CDK4-binding protein, p34SEI-1. Genes Dev 13, 3027–3033.[CrossRef]
    [Google Scholar]
  123. Swanton, C., Mann, D. J., Fleckenstein, B., Neipel, F., Peters, G. & Jones, N. ( 1997; ). Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390, 184–187.[CrossRef]
    [Google Scholar]
  124. Swanton, C., Card, G. L., Mann, D., McDonald, N. & Jones, N. ( 1999; ). Overcoming inhibitions: subversion of CKI function by viral cyclins. Trends Biochem Sci 24, 116–120.[CrossRef]
    [Google Scholar]
  125. Takizawa, C. G. & Morgan, D. O. ( 2000; ). Control of mitosis by changes in the subcellular location of cyclin-B1–Cdk1 and Cdc25C. Curr Opin Cell Biol 12, 658–665.[CrossRef]
    [Google Scholar]
  126. Toyoshima, H. & Hunter, T. ( 1994; ). p27, a novel inhibitor of G1 cyclin–Cdk protein kinase activity, is related to p21. Cell 78, 67–74.[CrossRef]
    [Google Scholar]
  127. Trimarchi, J. M. & Lees, J. A. ( 2002; ). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3, 11–20.
    [Google Scholar]
  128. van Dyk, L. F., Virgin, H. W. T. & Speck, S. H. ( 2000; ). The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74, 7451–7461.[CrossRef]
    [Google Scholar]
  129. Verschuren, E. W., Klefstrom, J., Evan, G. I. & Jones, N. ( 2002; ). The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2, 229–241.[CrossRef]
    [Google Scholar]
  130. Verschuren, E. W., Hodgson, J. G., Gray, J. W., Kogan, S., Jones, N. & Evan, G. I. ( 2004; ). The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res 64, 581–589.[CrossRef]
    [Google Scholar]
  131. Visintin, R., Craig, K., Hwang, E. S., Prinz, S., Tyers, M. & Amon, A. ( 1998; ). The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2, 709–718.[CrossRef]
    [Google Scholar]
  132. Vlach, J., Hennecke, S. & Amati, B. ( 1997; ). Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 16, 5334–5344.[CrossRef]
    [Google Scholar]
  133. Wang, Q., Xie, S., Chen, J., Fukasawa, K., Naik, U., Traganos, F., Darzynkiewicz, Z., Jhanwar-Uniyal, M. & Dai, W. ( 2002; ). Cell cycle arrest and apoptosis induced by human polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol 22, 3450–3459.[CrossRef]
    [Google Scholar]
  134. Won, K. A. & Reed, S. I. ( 1996; ). Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J 15, 4182–4193.
    [Google Scholar]
  135. Wu, L., Timmers, C., Maiti, B. & 12 other authors ( 2001; ). The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414, 457–462.[CrossRef]
    [Google Scholar]
  136. Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R. & Beach, D. ( 1993; ). p21 is a universal inhibitor of cyclin kinases. Nature 366, 701–704.[CrossRef]
    [Google Scholar]
  137. Yang, J. & Kornbluth, S. ( 1999; ). All aboard the cyclin train: subcellular trafficking of cyclins and their CDK partners. Trends Cell Biol 9, 207–210.[CrossRef]
    [Google Scholar]
  138. Yang, R., Morosetti, R. & Koeffler, H. P. ( 1997; ). Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines. Cancer Res 57, 913–920.
    [Google Scholar]
  139. Zarkowska, T. U. S., Harlow, E. & Mittnacht, S. ( 1997; ). Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene 14, 249–254.[CrossRef]
    [Google Scholar]
  140. Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, J. W. & Dean, D. C. ( 2000; ). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC–Rb–hSWI/SNF and Rb–hSWI/SNF. Cell 101, 79–89.[CrossRef]
    [Google Scholar]
  141. Zhong, W., Wang, H., Herndier, B. & Ganem, D. ( 1996; ). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci U S A 93, 6641–6646.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79812-0
Loading
/content/journal/jgv/10.1099/vir.0.79812-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error