Complete genome sequences of all members of the species Free

Abstract

The species (HEV-A) in the family consists of coxsackieviruses (CV) A2–A8, A10, A12, A14 and A16 and enterovirus 71. Complete genome sequences for the prototype strains of the 10 serotypes whose sequences were not represented in public databases have been determined and analysed in conjunction with previously available complete sequences in GenBank. Members of HEV-A are monophyletic relative to all other human enterovirus species in all regions of the genome except in the 5′ non-translated region (NTR), where they are known to cluster with members of HEV-B. The HEV-A prototype strains were about 66 to 86 % identical to one another in deduced capsid amino acid sequence. Antigenic cross-reactivity has been reported between CVA3-Olson and CVA8-Donovan, between CVA5-Swartz and CVA12-Texas-12 and between CVA16-G-10 and EV71-BrCr. Similarity plots, individual sequence comparisons and phylogenetic analyses demonstrate a high degree of capsid sequence similarity within each of these three pairs of prototype strains, providing a molecular basis for the observed antigenic relationships. In several cases, phylogenies constructed from the structural (P1) and non-structural regions of the genome (P2 and P3) are incongruent. The incongruent phylogenies and the similarity plot analyses imply that recombination has played a role in the evolution of the HEV-A prototype strains. CVA6-Gdula clearly contains sequences that are also present in CVA10-Kowalik and CVA12-Texas-12, suggesting that these three strains have a shared evolutionary history despite their lack of similarity in the capsid region.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79789-0
2004-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851597.html?itemId=/content/journal/jgv/10.1099/vir.0.79789-0&mimeType=html&fmt=ahah

References

  1. Alexander J. P. Jr, Baden L., Pallansch M. A., Anderson L. J. 1994; Enterovirus 71 infections and neurologic disease – United States, 1977–1991. J Infect Dis 169:905–908 [CrossRef]
    [Google Scholar]
  2. Beeman E. A., Huebner R. J., Cole R. M. 1952; Studies of coxsackie viruses; laboratory aspects of group A viruses. Am J Hyg 55:83–107
    [Google Scholar]
  3. Brown B. A., Pallansch M. A. 1995; Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res 39:195–205 [CrossRef]
    [Google Scholar]
  4. Brown B. A., Oberste M. S., Maher K., Pallansch M. A. 2003; Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 77:8973–8984 [CrossRef]
    [Google Scholar]
  5. Chan L. G., Parashar U. D., Lye M. S. 9 other authors 2000; Deaths of children during an outbreak of hand, foot, and mouth disease in Sarawak, Malaysia: clinical and pathological characteristics of the disease. Clin Infect Dis 31:678–683 [CrossRef]
    [Google Scholar]
  6. Contreras G., Barnett V. H., Melnick J. L. 1952; Identification of coxsackie viruses by immunological methods and their classification into 16 antigenically distinct types. J Immunol 69:395–414
    [Google Scholar]
  7. Dalldorf G. 1953; The coxsackie virus group. Ann N Y Acad Sci 56:583–586 [CrossRef]
    [Google Scholar]
  8. Dalldorf G., Sickles G. M. 1956; The coxsackie viruses. In Diagnostic Procedures for Virus and Rickettsial Diseases . , 2nd edn. pp  153–168 Edited by Lennette E. H., Schmidt N. J. New York: American Public Health Association;
  9. Hagiwara A., Tagaya I., Yoneyama T. 1978; Common antigen between coxsackievirus A 16 and enterovirus 71. Microbiol Immunol 22:81–88 [CrossRef]
    [Google Scholar]
  10. Hyypiä T., Hovi T., Knowles N. J., Stanway G. 1997; Classification of enteroviruses based on molecular and biological properties. J Gen Virol 78:1–11
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. King A. M. Q., Brown F., Christian P. 8 other authors 2000; Picornaviridae . In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses pp  657–678 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  14. Liu H.-M., Zheng D.-P., Zhang L.-B., Oberste M. S., Pallansch M. A., Kew O. M. 2000; Molecular evolution of a type 1 wild-vaccine poliovirus recombinant during widespread circulation in China. J Virol 74:11153–11161 [CrossRef]
    [Google Scholar]
  15. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C. 1999; Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160
    [Google Scholar]
  16. Melnick J. L. 1984; Enterovirus type 71 infections: a varied clinical pattern sometimes mimicking paralytic poliomyelitis. Rev Infect Dis 6:S387–S390 [CrossRef]
    [Google Scholar]
  17. Melnick J. L., Wenner H. A., Phillips C. A. 1979; Enteroviruses. In Diagnostic Procedures for Viral, Rickettsial, and Chlamydial Infections . , 5th edn. pp  471–534 Edited by Lennette E. H., Schmidt N. J. Washington, DC: American Public Health Association;
  18. Oberste M. S., Maher K., Pallansch M. A. 1998; Molecular phylogeny of all human enterovirus serotypes based on comparison of sequences at the 5′ end of the region encoding VP2. Virus Res 58:35–43 [CrossRef]
    [Google Scholar]
  19. Oberste M. S., Maher K., Kilpatrick D. R., Flemister M. R., Brown B. A., Pallansch M. A. 1999a; Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37:1288–1293
    [Google Scholar]
  20. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A. 1999b; Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948
    [Google Scholar]
  21. Oberste M. S., Maher K., Flemister M. R., Marchetti G., Kilpatrick D. R., Pallansch M. A. 2000; Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol 38:1170–1174
    [Google Scholar]
  22. Oberste M. S., Nix W. A., Maher K., Pallansch M. A. 2003; Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J Clin Virol 26:375–377 [CrossRef]
    [Google Scholar]
  23. Oberste M. S., Maher K., Pallansch M. 2004; Evidence for frequent recombination within Human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol 78:855–867 [CrossRef]
    [Google Scholar]
  24. Pallansch M. A., Roos R. P. 2001; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology , 4th edn. pp  723–775 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  25. Pöyry T., Hyypiä T., Horsnell C., Kinnunen L., Hovi T., Stanway G. 1994; Molecular analysis of coxsackievirus A16 reveals a new genetic group of enteroviruses. Virology 202:982–987 [CrossRef]
    [Google Scholar]
  26. Pöyry T., Kinnunen L., Hyypiä T., Brown B., Horsnell C., Hovi T., Stanway G. 1996; Genetic and phylogenetic clustering of enteroviruses. J Gen Virol 77:1699–1717 [CrossRef]
    [Google Scholar]
  27. Santti J., Hyypiä T., Kinnunen L., Salminen M. 1999; Evidence of recombination among enteroviruses. J Virol 73:8741–8749
    [Google Scholar]
  28. Schmidt N. J., Lennette E. H., Ho H. H. 1974; An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129:304–309 [CrossRef]
    [Google Scholar]
  29. Shimizu H., Utama A., Yoshii K. 13 other authors 1999; Enterovirus 71 from fatal and nonfatal cases of hand, foot and mouth disease epidemics in Malaysia, Japan and Taiwan in 1997–1998. Jpn J Infect Dis 52:12–15
    [Google Scholar]
  30. Sickles G. M., Dalldorf G. 1949; Serological differences among strains of the coxsackie group of viruses. Proc Soc Exp Biol Med 72:30–31 [CrossRef]
    [Google Scholar]
  31. Sickles G. M., Mutterer M., Feorino P., Plager H. 1955; Recently classified types of coxsackie virus, group A; behavior in tissue culture. Proc Soc Exp Biol Med 90:529–531 [CrossRef]
    [Google Scholar]
  32. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  33. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79789-0
Loading
/content/journal/jgv/10.1099/vir.0.79789-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed