The human H5N1 influenza A virus polymerase complex is active over a broad range of temperatures, in contrast to the WSN complex, and this property can be attributed to the PB2 subunit Free

Abstract

Influenza A virus (IAV) replicates in the upper respiratory tract of humans at 33 °C and in the intestinal tract of birds at close to 41 °C. The viral RNA polymerase complex comprises three subunits (PA, PB1 and PB2) and plays an important role in host adaptation. We therefore developed an system to examine the temperature sensitivity of IAV RNA polymerase complexes from different origins. Complexes were prepared from human lung epithelial cells (A549) using a novel adenoviral expression system. Affinity-purified complexes were generated that contained either all three subunits (PA/PB1/PB2) from the A/Viet/1203/04 H5N1 virus (H/H/H) or the A/WSN/33 H1N1 strain (W/W/W). We also prepared chimeric complexes in which the PB2 subunit was exchanged (H/H/W, W/W/H) or substituted with an avian PB2 from the A/chicken/Nanchang/3-120/01 H3N2 strain (W/W/N). All complexes were functional in transcription, cap-binding and endonucleolytic activity. Complexes containing the H5N1 or Nanchang PB2 protein retained transcriptional activity over a broad temperature range (30–42 °C). In contrast, complexes containing the WSN PB2 protein lost activity at elevated temperatures (39 °C or higher). The E627K mutation in the avian PB2 was not required for this effect. Finally, the avian PB2 subunit was shown to confer enhanced stability to the WSN 3P complex. These results show that PB2 plays an important role in regulating the temperature optimum for IAV RNA polymerase activity, possibly due to effects on the functional stability of the 3P complex.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/006254-0
2008-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/2923.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/006254-0&mimeType=html&fmt=ahah

References

  1. Almond J. W. 1977; A single gene determines the host range of influenza virus. Nature 270:617–618 [CrossRef]
    [Google Scholar]
  2. Brownlee G. G., Sharps J. L. 2002; The RNA polymerase of influenza A virus is stabilized by interaction with its viral RNA promoter. J Virol 76:7103–7113 [CrossRef]
    [Google Scholar]
  3. Carr S. M., Carnero E., Garcia-Sastre A., Brownlee G. G., Fodor E. 2006; Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza viruses. Virology 344:492–508 [CrossRef]
    [Google Scholar]
  4. Chen G. W., Chang S. C., Mok C. K., Lo Y. L., Kung Y. N., Huang J. H., Shih Y. H., Wang J. Y., Chiang C. other authors 2006; Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis 12:1353–1360 [CrossRef]
    [Google Scholar]
  5. Claas E. C., Osterhaus A. D., van Beek R., De Jong J. C., Rimmelzwaan G. F., Senne D. A., Krauss S., Shortridge K. F., Webster R. G. 1998; Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477 [CrossRef]
    [Google Scholar]
  6. Deane R., Schafer W., Zimmermann H. P., Mueller L., Gorlich D., Prehn S., Ponstingl H., Bischoff F. R. 1997; Ran-binding protein 5 (RanBP5) is related to the nuclear transport factor importin- β but interacts differently with RanBP1. Mol Cell Biol 17:5087–5096
    [Google Scholar]
  7. Deng T., Sharps J., Fodor E., Brownlee G. G. 2005; In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J Virol 79:8669–8674 [CrossRef]
    [Google Scholar]
  8. Deng T., Engelhardt O. G., Thomas B., Akoulitchev A. V., Brownlee G. G., Fodor E. 2006; Role of Ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol 80:11911–11919 [CrossRef]
    [Google Scholar]
  9. Finkelstein D. B., Mukatira S., Mehta P. K., Obenauer J. C., Su X., Webster R. G., Naeve C. W. 2007; Persistent host markers in pandemic and H5N1 influenza viruses. J Virol 81:10292–10299 [CrossRef]
    [Google Scholar]
  10. Fodor E., Brownlee G. G. 2002; Influenza virus replication. In Influenza pp 1–29Edited by Potter C. W. New York, NY: Elsevier Science;
    [Google Scholar]
  11. Fodor E., Smith M. 2004; The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol 78:9144–9153 [CrossRef]
    [Google Scholar]
  12. Fodor E., Crow M., Mingay L. J., Deng T., Sharps J., Fechter P., Brownlee G. G. 2002; A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76:8989–9001 [CrossRef]
    [Google Scholar]
  13. Gabriel G., Dauber B., Wolff T., Planz O., Klenk H. D., Stech J. 2005; The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 102:18590–18595 [CrossRef]
    [Google Scholar]
  14. Gabriel G., Abram M., Keiner B., Wagner R., Klenk H. D., Stech J. 2007; Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol 81:9601–9604 [CrossRef]
    [Google Scholar]
  15. Gabriel G., Herwig A., Klenk H. D. 2008; Interaction of polymerase subunit PB2 and NP with importin α 1 is a determinant of host range of influenza A virus. PLoS Pathog 4:e11 [CrossRef]
    [Google Scholar]
  16. Gambotto A., Barratt-Boyes S. M., de Jong M. D., Neumann G., Kawaoka Y. 2008; Human infection with highly pathogenic H5N1 influenza virus. Lancet 371:1464–1475 [CrossRef]
    [Google Scholar]
  17. Guilligay D., Tarendeau F., Resa-Infante P., Coloma R., Crepin T., Sehr P., Lewis J., Ruigrok R. W., Ortin J. other authors 2008; The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15:500–506 [CrossRef]
    [Google Scholar]
  18. Hara K., Schmidt F. I., Crow M., Brownlee G. G. 2006; Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 80:7789–7798 [CrossRef]
    [Google Scholar]
  19. Hatta M., Gao P., Halfmann P., Kawaoka Y. 2001; Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842 [CrossRef]
    [Google Scholar]
  20. Hatta M., Hatta Y., Kim J. H., Watanabe S., Shinya K., Nguyen T., Lien P. S., Le Q. M., Kawaoka Y. 2007; Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog 3:e133 [CrossRef]
    [Google Scholar]
  21. Heim A., Ebnet C., Harste G., Pring-Akerblom P. 2003; Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol 70:228–239 [CrossRef]
    [Google Scholar]
  22. Kawaguchi A., Naito T., Nagata K. 2005; Involvement of influenza virus PA subunit in assembly of functional RNA polymerase complexes. J Virol 79:732–744 [CrossRef]
    [Google Scholar]
  23. Labadie K., Dos Santos Afonso E., Rameix-Welti M. A., van der Werf S., Naffakh N. 2007; Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology 362:271–282 [CrossRef]
    [Google Scholar]
  24. Lamb R. A., Krug R. M. 2001; Orthomyxoviridae : the viruses and their replication. In Fields Virology , 4th edn. pp 1487–1531Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Strauss. Philadelphia, PA: Lippincott, Williams and Wilkins;
    [Google Scholar]
  25. Li M. L., Rao P., Krug R. M. 2001; The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 20:2078–2086 [CrossRef]
    [Google Scholar]
  26. Li K. S., Guan Y., Wang J., Smith G. J., Xu K. M., Duan L., Rahardjo A. P., Puthavathana P., Buranathai C. other authors 2004; Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430:209–213 [CrossRef]
    [Google Scholar]
  27. Li Z., Chen H., Jiao P., Deng G., Tian G., Li Y., Hoffmann E., Webster R. G., Matsuoka Y., Yu K. 2005; Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79:12058–12064 [CrossRef]
    [Google Scholar]
  28. Liu M., He S., Walker D., Zhou N., Perez D. R., Mo B., Li F., Huang X., Webster R. G., Webby R. J. 2003; The influenza virus gene pool in a poultry market in South Central China. Virology 305:267–275 [CrossRef]
    [Google Scholar]
  29. Malkowski M. G., Quartley E., Friedman A. E., Babulski J., Kon Y., Wolfley J., Said M., Luft J. R., Phizicky E. M. other authors 2007; Blocking S -adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiwavelength anomalous dispersion phasing. Proc Natl Acad Sci U S A 104:6678–6683 [CrossRef]
    [Google Scholar]
  30. Massin P., van der Werf S., Naffakh N. 2001; Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol 75:5398–5404 [CrossRef]
    [Google Scholar]
  31. Murakami Y., Nerome K., Yoshioka Y., Mizuno S., Oya A. 1988; Difference in growth behavior of human, swine, equine, and avian influenza viruses at a high temperature. Arch Virol 100:231–244 [CrossRef]
    [Google Scholar]
  32. Murphy B. R., Hinshaw V. S., Sly D. L., London W. T., Hosier N. T., Wood F. T., Webster R. G., Chanock R. M. 1982a; Virulence of avian influenza A viruses for squirrel monkeys. Infect Immun 37:1119–1126
    [Google Scholar]
  33. Murphy B. R., Sly D. L., Tierney E. L., Hosier N. T., Massicot J. G., London W. T., Chanock R. M., Webster R. G., Hinshaw V. S. 1982b; Reassortant virus derived from avian and human influenza A viruses is attenuated and immunogenic in monkeys. Science 218:1330–1332 [CrossRef]
    [Google Scholar]
  34. Naffakh N., Massin P., Escriou N., Crescenzo-Chaigne B., van der Werf S. 2000; Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J Gen Virol 81:1283–1291
    [Google Scholar]
  35. Nieto A., de la Luna S., Barcena J., Portela A., Valcarcel J., Melero J. A., Ortin J. 1992; Nuclear transport of influenza virus polymerase PA protein. Virus Res 24:65–75 [CrossRef]
    [Google Scholar]
  36. Perales B., Ortin J. 1997; The influenza A virus PB2 polymerase subunit is required for the replication of viral RNA. J Virol 71:1381–1385
    [Google Scholar]
  37. Perales B., Sanz-Ezquerro J. J., Gastaminza P., Ortega J., Santaren J. F., Ortin J., Nieto A. 2000; The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis. J Virol 74:1307–1312 [CrossRef]
    [Google Scholar]
  38. Plotch S. J., Bouloy M., Ulmanen I., Krug R. M. 1981; A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858 [CrossRef]
    [Google Scholar]
  39. Puig O., Caspary F., Rigaut G., Rutz B., Bouveret E., Bragado-Nilsson E., Wilm M., Seraphin B. 2001; The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229 [CrossRef]
    [Google Scholar]
  40. Regan J. F., Liang Y., Parslow T. G. 2006; Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA. J Virol 80:252–261 [CrossRef]
    [Google Scholar]
  41. Salomon R., Franks J., Govorkova E. A., Ilyushina N. A., Yen H. L., Hulse-Post D. J., Humberd J., Trichet M., Rehg J. E. other authors 2006; The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 203:689–697 [CrossRef]
    [Google Scholar]
  42. Sanz-Ezquerro J. J., de la Luna S., Ortin J., Nieto A. 1995; Individual expression of influenza virus PA protein induces degradation of coexpressed proteins. J Virol 69:2420–2426
    [Google Scholar]
  43. Shinya K., Hamm S., Hatta M., Ito H., Ito T., Kawaoka Y. 2004; PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258–266 [CrossRef]
    [Google Scholar]
  44. Suzuki Y., Ito T., Suzuki T., Holland R. E. Jr, Chambers T. M., Kiso M., Ishida H., Kawaoka Y. 2000; Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 74:11825–11831 [CrossRef]
    [Google Scholar]
  45. Taubenberger J. K., Reid A. H., Lourens R. M., Wang R., Jin G., Fanning T. G. 2005; Characterization of the 1918 influenza virus polymerase genes. Nature 437:889–893 [CrossRef]
    [Google Scholar]
  46. Torreira E., Schoehn G., Fernandez Y., Jorba N., Ruigrok R. W., Cusack S., Ortin J., Llorca O. 2007; Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res 35:3774–3783 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/006254-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/006254-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed