1887

Abstract

Herpes simplex virus type 1 (HSV-1) has the capacity to establish a life-long latent infection in sensory neurones and also to periodically reactivate from these cells. Since mutant viruses defective for immediate-early (IE) expression retain the capacity for latency establishment it is widely assumed that latency is the consequence of a block in IE gene expression. However, it is not clear whether viral gene expression can precede latency establishment following wild-type virus infection. In order to address this question we have utilized a reporter mouse model system to facilitate a historical analysis of viral promoter activation . This system utilizes recombinant viruses expressing Cre recombinase under the control of different viral promoters and the Cre reporter mouse strain ROSA26R. In this model, viral promoter-driven Cre recombinase mediates a permanent genetic change, resulting in reporter gene activation and permanent marking of latently infected cells. The analyses of HSV-1 recombinants containing human cytomegalovirus major immediate-early, ICP0, gC or latency-associated transcript promoters linked to Cre recombinase in this system have revealed the existence of a population of neurones that have experienced IE promoter activation prior to the establishment of latency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/005066-0
2008-12-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/2965.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/005066-0&mimeType=html&fmt=ahah

References

  1. Arthur J., Efstathiou S., Simmons A. 1993; Intranuclear foci containing low abundance herpes simplex virus latency-associated transcripts visualized by non-isotopic in situ hybridization. J Gen Virol 74:1363–1370 [CrossRef]
    [Google Scholar]
  2. Arthur J. L., Scarpini C. G., Connor V., Lachmann R. H., Tolkovsky A. M., Efstathiou S. 2001; Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro . J Virol 75:3885–3895 [CrossRef]
    [Google Scholar]
  3. Balan P., Davis-Poynter N., Bell S., Atkinson H., Browne H., Minson T. 1994; An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 75:1245–1258 [CrossRef]
    [Google Scholar]
  4. Balliet J. W., Kushnir A. S., Schaffer P. A. 2007; Construction and characterization of a herpes simplex virus type I recombinant expressing green fluorescent protein: acute phase replication and reactivation in mice. Virology 361:372–383 [CrossRef]
    [Google Scholar]
  5. Chen X. P., Mata M., Kelley M., Glorioso J. C., Fink D. J. 2002; The relationship of herpes simplex virus latency associated transcript expression to genome copy number: a quantitative study using laser capture microdissection. J Neurovirol 8:204–210 [CrossRef]
    [Google Scholar]
  6. Coleman H. M., Connor V., Cheng Z. S., Grey F., Preston C. M., Efstathiou S. 2008; Histone modifications associated with herpes simplex virus type 1 genomes during quiescence and following ICP0-mediated de-repression. J Gen Virol 89:68–77 [CrossRef]
    [Google Scholar]
  7. Dush M. K., Sikela J. M., Khan S. A., Tischfield J. A., Stambrook P. J. 1985; Nucleotide sequence and organization of the mouse adenine phosphoribosyltransferase gene: presence of a coding region common to animal and bacterial phosphoribosyltransferases that has a variable intron/exon arrangement. Proc Natl Acad Sci U S A 82:2731–2735 [CrossRef]
    [Google Scholar]
  8. Efstathiou S., Preston C. M. 2005; Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111:108–119 [CrossRef]
    [Google Scholar]
  9. Everett R. D. 2000; ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22:761–770 [CrossRef]
    [Google Scholar]
  10. Feldman L. T., Ellison A. R., Voytek C. C., Yang L., Krause P., Margolis T. P. 2002; Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A 99:978–983 [CrossRef]
    [Google Scholar]
  11. Garcia-Blanco M. A., Cullen B. R. 1991; Molecular basis of latency in pathogenic human viruses. Science 254:815–820 [CrossRef]
    [Google Scholar]
  12. Hill T. J., Field H. J., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol 28:341–353 [CrossRef]
    [Google Scholar]
  13. Knipe D. M., Cliffe A. 2008; Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221 [CrossRef]
    [Google Scholar]
  14. Lachmann R. H., Efstathiou S. 1997; Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 71:3197–3207
    [Google Scholar]
  15. Lachmann R. H., Brown C., Efstathiou S. 1996; A murine RNA polymerase I promoter inserted into the herpes simplex virus type 1 genome is functional during lytic, but not latent, infection. J Gen Virol 77:2575–2582 [CrossRef]
    [Google Scholar]
  16. Lachmann R. H., Sadarangani M., Atkinson H. R., Efstathiou S. 1999; An analysis of herpes simplex virus gene expression during latency establishment and reactivation. J Gen Virol 80:1271–1282
    [Google Scholar]
  17. Maggioncalda J., Mehta A., Su Y. H., Fraser N. W., Block T. M. 1996; Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology 225:72–81 [CrossRef]
    [Google Scholar]
  18. Margolis T. P., Dawson C. R., LaVail J. H. 1992; Herpes simplex viral infection of the mouse trigeminal ganglion. Immunohistochemical analysis of cell populations. Invest Ophthalmol Vis Sci 33:259–267
    [Google Scholar]
  19. Marshall K. R., Lachmann R. H., Efstathiou S., Rinaldi A., Preston C. M. 2000; Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate-early gene expression. J Virol 74:956–964 [CrossRef]
    [Google Scholar]
  20. Mehta A., Maggioncalda J., Bagasra O., Thikkavarapu S., Saikumari P., Valyi-Nagy T., Fraser N. W., Block T. M. 1995; In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology 206:633–640 [CrossRef]
    [Google Scholar]
  21. Ramakrishnan R., Poliani P. L., Levine M., Glorioso J. C., Fink D. J. 1996; Detection of herpes simplex virus type 1 latency-associated transcript expression in trigeminal ganglia by in situ reverse transcriptase PCR. J Virol 70:6519–6523
    [Google Scholar]
  22. Rinaldi A., Marshall K. R., Preston C. M. 1999; A non-cytotoxic herpes simplex virus vector which expresses Cre recombinase directs efficient site specific recombination. Virus Res 65:11–20 [CrossRef]
    [Google Scholar]
  23. Sawtell N. M. 1997; Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71:5423–5431
    [Google Scholar]
  24. Sawtell N. M. 2003; Quantitative analysis of herpes simplex virus reactivation in vivo demonstrates that reactivation in the nervous system is not inhibited at early times postinoculation. J Virol 77:4127–4138 [CrossRef]
    [Google Scholar]
  25. Sawtell N. M., Poon D. K., Tansky C. S., Thompson R. L. 1998; The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72:5343–5350
    [Google Scholar]
  26. Scarpini C. G., May J., Lachmann R. H., Preston C. M., Dunnett S. B., Torres E. M., Efstathiou S. 2001; Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Ther 8:1057–1071 [CrossRef]
    [Google Scholar]
  27. Sheridan B. S., Knickelbein J. E., Hendricks R. L. 2007; CD8 T cells and latent herpes simplex virus type 1: keeping the peace in sensory ganglia. Expert Opin Biol Ther 7:1323–1331 [CrossRef]
    [Google Scholar]
  28. Shimeld C., Efstathiou S., Hill T. 2001; Tracking the spread of a lacZ-tagged herpes simplex virus type 1 between the eye and the nervous system of the mouse: comparison of primary and recurrent infection. J Virol 75:5252–5262 [CrossRef]
    [Google Scholar]
  29. Simmons A., Tscharke D. C. 1992; Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med 175:1337–1344 [CrossRef]
    [Google Scholar]
  30. Slobedman B., Efstathiou S., Simmons A. 1994; Quantitative analysis of herpes simplex virus DNA and transcriptional activity in ganglia of mice latently infected with wild-type and thymidine kinase-deficient viral strains. J Gen Virol 75:2469–2474 [CrossRef]
    [Google Scholar]
  31. Smith G. A., Enquist L. W. 2000; A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci U S A 97:4873–4878 [CrossRef]
    [Google Scholar]
  32. Smith C., Lachmann R. H., Efstathiou S. 2000; Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. J Gen Virol 81:649–662
    [Google Scholar]
  33. Soriano P. 1999; Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71 [CrossRef]
    [Google Scholar]
  34. Speck P. G., Simmons A. 1992; Synchronous appearance of antigen-positive and latently infected neurons in spinal ganglia of mice infected with a virulent strain of herpes simplex virus. J Gen Virol 73:1281–1285 [CrossRef]
    [Google Scholar]
  35. Thompson R. L., Sawtell N. M. 2000; Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74:965–974 [CrossRef]
    [Google Scholar]
  36. Thompson R. L., Shieh M. T., Sawtell N. M. 2003; Analysis of herpes simplex virus ICP0 promoter function in sensory neurons during acute infection, establishment of latency, and reactivation in vivo. J Virol 77:12319–12330 [CrossRef]
    [Google Scholar]
  37. Umbach J. L., Kramer M. F., Jurak I., Karnowski H. H., Coen D. M., Cullen B. R. 2008; MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783
    [Google Scholar]
  38. Wagner E. K., Bloom D. C. 1997; Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10:419–443
    [Google Scholar]
  39. Wakim L. M., Jones C. M., Gebhardt T., Preston C. M., Carbone F. R. 2008 CD8+ T-cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection Immunol Cell Biol;
    [Google Scholar]
  40. Wang K., Lau T. Y., Morales M., Mont E. K., Straus S. E. 2005; Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level. J Virol 79:14079–14087 [CrossRef]
    [Google Scholar]
  41. Weir J. P., Narayanan P. R. 1990; Expression of the herpes simplex virus type 1 glycoprotein C gene requires sequences in the 5′ noncoding region of the gene. J Virol 64:445–449
    [Google Scholar]
  42. Wilcox C. L., Smith R. L., Freed C. R., Johnson E. M. Jr 1990; Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro . J Neurosci 10:1268–1275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/005066-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/005066-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error