1887

Abstract

Herpes simplex virus type 1 (HSV-1) has the capacity to establish a life-long latent infection in sensory neurones and also to periodically reactivate from these cells. Since mutant viruses defective for immediate-early (IE) expression retain the capacity for latency establishment it is widely assumed that latency is the consequence of a block in IE gene expression. However, it is not clear whether viral gene expression can precede latency establishment following wild-type virus infection. In order to address this question we have utilized a reporter mouse model system to facilitate a historical analysis of viral promoter activation . This system utilizes recombinant viruses expressing Cre recombinase under the control of different viral promoters and the Cre reporter mouse strain ROSA26R. In this model, viral promoter-driven Cre recombinase mediates a permanent genetic change, resulting in reporter gene activation and permanent marking of latently infected cells. The analyses of HSV-1 recombinants containing human cytomegalovirus major immediate-early, ICP0, gC or latency-associated transcript promoters linked to Cre recombinase in this system have revealed the existence of a population of neurones that have experienced IE promoter activation prior to the establishment of latency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/005066-0
2008-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/2965.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/005066-0&mimeType=html&fmt=ahah

References

  1. Arthur, J., Efstathiou, S. & Simmons, A. ( 1993; ). Intranuclear foci containing low abundance herpes simplex virus latency-associated transcripts visualized by non-isotopic in situ hybridization. J Gen Virol 74, 1363–1370.[CrossRef]
    [Google Scholar]
  2. Arthur, J. L., Scarpini, C. G., Connor, V., Lachmann, R. H., Tolkovsky, A. M. & Efstathiou, S. ( 2001; ). Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro. J Virol 75, 3885–3895.[CrossRef]
    [Google Scholar]
  3. Balan, P., Davis-Poynter, N., Bell, S., Atkinson, H., Browne, H. & Minson, T. ( 1994; ). An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 75, 1245–1258.[CrossRef]
    [Google Scholar]
  4. Balliet, J. W., Kushnir, A. S. & Schaffer, P. A. ( 2007; ). Construction and characterization of a herpes simplex virus type I recombinant expressing green fluorescent protein: acute phase replication and reactivation in mice. Virology 361, 372–383.[CrossRef]
    [Google Scholar]
  5. Chen, X. P., Mata, M., Kelley, M., Glorioso, J. C. & Fink, D. J. ( 2002; ). The relationship of herpes simplex virus latency associated transcript expression to genome copy number: a quantitative study using laser capture microdissection. J Neurovirol 8, 204–210.[CrossRef]
    [Google Scholar]
  6. Coleman, H. M., Connor, V., Cheng, Z. S., Grey, F., Preston, C. M. & Efstathiou, S. ( 2008; ). Histone modifications associated with herpes simplex virus type 1 genomes during quiescence and following ICP0-mediated de-repression. J Gen Virol 89, 68–77.[CrossRef]
    [Google Scholar]
  7. Dush, M. K., Sikela, J. M., Khan, S. A., Tischfield, J. A. & Stambrook, P. J. ( 1985; ). Nucleotide sequence and organization of the mouse adenine phosphoribosyltransferase gene: presence of a coding region common to animal and bacterial phosphoribosyltransferases that has a variable intron/exon arrangement. Proc Natl Acad Sci U S A 82, 2731–2735.[CrossRef]
    [Google Scholar]
  8. Efstathiou, S. & Preston, C. M. ( 2005; ). Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111, 108–119.[CrossRef]
    [Google Scholar]
  9. Everett, R. D. ( 2000; ). ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22, 761–770.[CrossRef]
    [Google Scholar]
  10. Feldman, L. T., Ellison, A. R., Voytek, C. C., Yang, L., Krause, P. & Margolis, T. P. ( 2002; ). Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A 99, 978–983.[CrossRef]
    [Google Scholar]
  11. Garcia-Blanco, M. A. & Cullen, B. R. ( 1991; ). Molecular basis of latency in pathogenic human viruses. Science 254, 815–820.[CrossRef]
    [Google Scholar]
  12. Hill, T. J., Field, H. J. & Blyth, W. A. ( 1975; ). Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol 28, 341–353.[CrossRef]
    [Google Scholar]
  13. Knipe, D. M. & Cliffe, A. ( 2008; ). Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6, 211–221.[CrossRef]
    [Google Scholar]
  14. Lachmann, R. H. & Efstathiou, S. ( 1997; ). Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 71, 3197–3207.
    [Google Scholar]
  15. Lachmann, R. H., Brown, C. & Efstathiou, S. ( 1996; ). A murine RNA polymerase I promoter inserted into the herpes simplex virus type 1 genome is functional during lytic, but not latent, infection. J Gen Virol 77, 2575–2582.[CrossRef]
    [Google Scholar]
  16. Lachmann, R. H., Sadarangani, M., Atkinson, H. R. & Efstathiou, S. ( 1999; ). An analysis of herpes simplex virus gene expression during latency establishment and reactivation. J Gen Virol 80, 1271–1282.
    [Google Scholar]
  17. Maggioncalda, J., Mehta, A., Su, Y. H., Fraser, N. W. & Block, T. M. ( 1996; ). Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology 225, 72–81.[CrossRef]
    [Google Scholar]
  18. Margolis, T. P., Dawson, C. R. & LaVail, J. H. ( 1992; ). Herpes simplex viral infection of the mouse trigeminal ganglion. Immunohistochemical analysis of cell populations. Invest Ophthalmol Vis Sci 33, 259–267.
    [Google Scholar]
  19. Marshall, K. R., Lachmann, R. H., Efstathiou, S., Rinaldi, A. & Preston, C. M. ( 2000; ). Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate-early gene expression. J Virol 74, 956–964.[CrossRef]
    [Google Scholar]
  20. Mehta, A., Maggioncalda, J., Bagasra, O., Thikkavarapu, S., Saikumari, P., Valyi-Nagy, T., Fraser, N. W. & Block, T. M. ( 1995; ). In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology 206, 633–640.[CrossRef]
    [Google Scholar]
  21. Ramakrishnan, R., Poliani, P. L., Levine, M., Glorioso, J. C. & Fink, D. J. ( 1996; ). Detection of herpes simplex virus type 1 latency-associated transcript expression in trigeminal ganglia by in situ reverse transcriptase PCR. J Virol 70, 6519–6523.
    [Google Scholar]
  22. Rinaldi, A., Marshall, K. R. & Preston, C. M. ( 1999; ). A non-cytotoxic herpes simplex virus vector which expresses Cre recombinase directs efficient site specific recombination. Virus Res 65, 11–20.[CrossRef]
    [Google Scholar]
  23. Sawtell, N. M. ( 1997; ). Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71, 5423–5431.
    [Google Scholar]
  24. Sawtell, N. M. ( 2003; ). Quantitative analysis of herpes simplex virus reactivation in vivo demonstrates that reactivation in the nervous system is not inhibited at early times postinoculation. J Virol 77, 4127–4138.[CrossRef]
    [Google Scholar]
  25. Sawtell, N. M., Poon, D. K., Tansky, C. S. & Thompson, R. L. ( 1998; ). The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72, 5343–5350.
    [Google Scholar]
  26. Scarpini, C. G., May, J., Lachmann, R. H., Preston, C. M., Dunnett, S. B., Torres, E. M. & Efstathiou, S. ( 2001; ). Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Ther 8, 1057–1071.[CrossRef]
    [Google Scholar]
  27. Sheridan, B. S., Knickelbein, J. E. & Hendricks, R. L. ( 2007; ). CD8 T cells and latent herpes simplex virus type 1: keeping the peace in sensory ganglia. Expert Opin Biol Ther 7, 1323–1331.[CrossRef]
    [Google Scholar]
  28. Shimeld, C., Efstathiou, S. & Hill, T. ( 2001; ). Tracking the spread of a lacZ-tagged herpes simplex virus type 1 between the eye and the nervous system of the mouse: comparison of primary and recurrent infection. J Virol 75, 5252–5262.[CrossRef]
    [Google Scholar]
  29. Simmons, A. & Tscharke, D. C. ( 1992; ). Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med 175, 1337–1344.[CrossRef]
    [Google Scholar]
  30. Slobedman, B., Efstathiou, S. & Simmons, A. ( 1994; ). Quantitative analysis of herpes simplex virus DNA and transcriptional activity in ganglia of mice latently infected with wild-type and thymidine kinase-deficient viral strains. J Gen Virol 75, 2469–2474.[CrossRef]
    [Google Scholar]
  31. Smith, G. A. & Enquist, L. W. ( 2000; ). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci U S A 97, 4873–4878.[CrossRef]
    [Google Scholar]
  32. Smith, C., Lachmann, R. H. & Efstathiou, S. ( 2000; ). Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. J Gen Virol 81, 649–662.
    [Google Scholar]
  33. Soriano, P. ( 1999; ). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21, 70–71.[CrossRef]
    [Google Scholar]
  34. Speck, P. G. & Simmons, A. ( 1992; ). Synchronous appearance of antigen-positive and latently infected neurons in spinal ganglia of mice infected with a virulent strain of herpes simplex virus. J Gen Virol 73, 1281–1285.[CrossRef]
    [Google Scholar]
  35. Thompson, R. L. & Sawtell, N. M. ( 2000; ). Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74, 965–974.[CrossRef]
    [Google Scholar]
  36. Thompson, R. L., Shieh, M. T. & Sawtell, N. M. ( 2003; ). Analysis of herpes simplex virus ICP0 promoter function in sensory neurons during acute infection, establishment of latency, and reactivation in vivo. J Virol 77, 12319–12330.[CrossRef]
    [Google Scholar]
  37. Umbach, J. L., Kramer, M. F., Jurak, I., Karnowski, H. H., Coen, D. M. & Cullen, B. R. ( 2008; ). MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780–783.
    [Google Scholar]
  38. Wagner, E. K. & Bloom, D. C. ( 1997; ). Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10, 419–443.
    [Google Scholar]
  39. Wakim, L. M., Jones, C. M., Gebhardt, T., Preston, C. M. & Carbone, F. R. ( 2008; ). CD8+ T-cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunol Cell Biol
    [Google Scholar]
  40. Wang, K., Lau, T. Y., Morales, M., Mont, E. K. & Straus, S. E. ( 2005; ). Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level. J Virol 79, 14079–14087.[CrossRef]
    [Google Scholar]
  41. Weir, J. P. & Narayanan, P. R. ( 1990; ). Expression of the herpes simplex virus type 1 glycoprotein C gene requires sequences in the 5′ noncoding region of the gene. J Virol 64, 445–449.
    [Google Scholar]
  42. Wilcox, C. L., Smith, R. L., Freed, C. R. & Johnson, E. M., Jr ( 1990; ). Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. J Neurosci 10, 1268–1275.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/005066-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/005066-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error