1887

Abstract

The vaccinia virus (VACV) strain Western Reserve C16 protein has been characterized and its effects on virus replication and virulence have been determined. The gene is present in the inverted terminal repeat and so is one of the few VACV genes that are diploid. The C16 protein is highly conserved between different VACV strains, and also in the orthopoxviruses variola virus, ectromelia virus, horsepox virus and cowpox virus. C16 is a 37.5 kDa protein, which is expressed early during infection and localizes to the cell nucleus and cytoplasm of infected and transfected cells. The loss of the gene had no effect on virus growth kinetics but did reduce plaque size slightly. Furthermore, the virulence of a virus lacking (vΔC16) was reduced in a murine intranasal model compared with control viruses and there were reduced virus titres from 4 days post-infection. In the absence of C16, the recruitment of inflammatory cells in the lung and bronchoalveolar lavage was increased early after infection (day 3) and more CD4 and CD8 T cells expressed the CD69 activation marker. Conversely, late after infection with vΔC16 (day 10) there were fewer T cells remaining, indicating more rapid clearance of infection. Collectively, these data indicate that C16 diminishes the immune response and is an intracellular immunomodulator.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/004895-0
2008-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2377.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/004895-0&mimeType=html&fmt=ahah

References

  1. Afonso, C. L., Delhon, G., Tulman, E. R., Lu, Z., Zsak, A., Becerra, V. M., Zsak, L., Kutish, G. F. & Rock, D. L. ( 2005; ). Genome of deerpox virus. J Virol 79, 966–977.[CrossRef]
    [Google Scholar]
  2. Alcamí, A. & Smith, G. L. ( 1992; ). A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153–167.[CrossRef]
    [Google Scholar]
  3. Alcamí, A. & Smith, G. L. ( 1996; ). A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci U S A 93, 11029–11034.[CrossRef]
    [Google Scholar]
  4. Arend, W. P., Malyak, M., Guthridge, C. J. & Gabay, C. ( 1998; ). Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 16, 27–55.[CrossRef]
    [Google Scholar]
  5. Assarsson, E., Greenbaum, J. A., Sundstrom, M., Schaffer, L., Hammond, J. A., Pasquetto, V., Oseroff, C., Hendrickson, R. C., Lefkowitz, E. J. & other authors ( 2008; ). Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes. Proc Natl Acad Sci U S A 105, 2140–2145.[CrossRef]
    [Google Scholar]
  6. Banda, N. K., Guthridge, C., Sheppard, D., Cairns, K. S., Muggli, M., Bech-Otschir, D., Dubiel, W. & Arend, W. P. ( 2005; ). Intracellular IL-1 receptor antagonist type 1 inhibits IL-1-induced cytokine production in keratinocytes through binding to the third component of the COP9 signalosome. J Immunol 174, 3608–3616.[CrossRef]
    [Google Scholar]
  7. Bartlett, N., Symons, J. A., Tscharke, D. C. & Smith, G. L. ( 2002; ). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83, 1965–1976.
    [Google Scholar]
  8. Bartlett, N. W., Dumoutier, L., Renauld, J. C., Kotenko, S. V., McVey, C. E., Lee, H. J. & Smith, G. L. ( 2004; ). A new member of the interleukin 10-related cytokine family encoded by a poxvirus. J Gen Virol 85, 1401–1412.[CrossRef]
    [Google Scholar]
  9. Bowie, A., Kiss-Toth, E., Symons, J. A., Smith, G. L., Dower, S. K. & O'Neill, L. A. ( 2000; ). A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97, 10162–10167.[CrossRef]
    [Google Scholar]
  10. Boyle, D. B. & Coupar, B. E. ( 1988; ). A dominant selectable marker for the construction of recombinant poxviruses. Gene 65, 123–128.[CrossRef]
    [Google Scholar]
  11. Brandt, T. A. & Jacobs, B. L. ( 2001; ). Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J Virol 75, 850–856.[CrossRef]
    [Google Scholar]
  12. Brown, C. K., Turner, P. C. & Moyer, R. W. ( 1991; ). Molecular characterization of the vaccinia virus hemagglutinin gene. J Virol 65, 3598–3606.
    [Google Scholar]
  13. Buller, R. M., Chakrabarti, S., Moss, B. & Fredrickson, T. ( 1988; ). Cell proliferative response to vaccinia virus is mediated by VGF. Virology 164, 182–192.[CrossRef]
    [Google Scholar]
  14. Butcher, C., Steinkasserer, A., Tejura, S. & Lennard, A. C. ( 1994; ). Comparison of two promoters controlling expression of secreted or intracellular IL-1 receptor antagonist. J Immunol 153, 701–711.
    [Google Scholar]
  15. Chang, H. W., Watson, J. C. & Jacobs, B. L. ( 1992; ). The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 89, 4825–4829.[CrossRef]
    [Google Scholar]
  16. Chen, R. A., Jacobs, N. & Smith, G. L. ( 2006; ). Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 87, 1451–1458.[CrossRef]
    [Google Scholar]
  17. Chen, R. A., Ryzhakov, G., Cooray, S., Randow, F. & Smith, G. L. ( 2008; ). Inhibition of IκB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4, e22 [CrossRef]
    [Google Scholar]
  18. Cheng, W., Shivshankar, P., Zhong, Y., Chen, D., Li, Z. & Zhong, G. ( 2008; ). Intracellular interleukin-1α mediates interleukin-8 production induced by Chlamydia trachomatis infection via a mechanism independent of type I interleukin-1 receptor. Infect Immun 76, 942–951.[CrossRef]
    [Google Scholar]
  19. Clark, R. H., Kenyon, J. C., Bartlett, N. W., Tscharke, D. C. & Smith, G. L. ( 2006; ). Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 87, 29–38.[CrossRef]
    [Google Scholar]
  20. Cooray, S., Bahar, M. W., Abrescia, N. G., McVey, C. E., Bartlett, N. W., Chen, R. A., Stuart, D. I., Grimes, J. M. & Smith, G. L. ( 2007; ). Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 88, 1656–1666.[CrossRef]
    [Google Scholar]
  21. Davison, A. J. & Moss, B. ( 1990; ). New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Res 18, 4285–4286.[CrossRef]
    [Google Scholar]
  22. DiPerna, G., Stack, J., Bowie, A. G., Boyd, A., Kotwal, G., Zhang, Z., Arvikar, S., Latz, E., Fitzgerald, K. A. & Marshall, W. L. ( 2004; ). Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by toll-like receptors. J Biol Chem 279, 36570–36578.[CrossRef]
    [Google Scholar]
  23. Dobbelstein, M. & Shenk, T. ( 1996; ). Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J Virol 70, 6479–6485.
    [Google Scholar]
  24. Fenner, F., Anderson, D. A., Arita, I., Jezek, Z. & Ladnyi, I. D. ( 1988; ). Smallpox and its Eradication. Geneva: World Health Organization.
  25. Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P. & Paoletti, E. ( 1990; ). The complete DNA sequence of vaccinia virus. Virology 179, 247–266, 517–563.
    [Google Scholar]
  26. Graham, S. C., Bahar, M. W., Cooray, S., Chen, R. A.-J., Whalen, D. W., Abrescia, N. G. A., Alderton, D., Owens, R. J., Stuart, D. I. & other authors ( 2008; ). Vaccinia virus proteins A52 and B14 share a Bcl-2-like fold but have evolved to inhibit NF-κB rather than apoptosis. PLoS Pathog 4, (8). e1000128 [CrossRef]
    [Google Scholar]
  27. Haga, I. R. & Bowie, A. G. ( 2005; ). Evasion of innate immunity by vaccinia virus. Parasitology 130 (Suppl.), S11–S25.[CrossRef]
    [Google Scholar]
  28. Harte, M. T., Haga, I. R., Maloney, G., Gray, P., Reading, P. C., Bartlett, N. W., Smith, G. L., Bowie, A. & O'Neill, L. A. ( 2003; ). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197, 343–351.[CrossRef]
    [Google Scholar]
  29. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. ( 1989; ). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.[CrossRef]
    [Google Scholar]
  30. Jacobs, N., Chen, R. A., Gubser, C., Najarro, P. & Smith, G. L. ( 2006; ). Intradermal immune response after infection with vaccinia virus. J Gen Virol 87, 1157–1161.[CrossRef]
    [Google Scholar]
  31. Kerr, S. M. & Smith, G. L. ( 1991; ). Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 180, 625–632.[CrossRef]
    [Google Scholar]
  32. Kettle, S., Alcamí, A., Khanna, A., Ehret, R., Jassoy, C. & Smith, G. L. ( 1997; ). Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1β-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever. J Gen Virol 78, 677–685.
    [Google Scholar]
  33. Kluczyk, A., Siemion, I. Z., Szewczuk, Z. & Wieczorek, Z. ( 2002; ). The immunosuppressive activity of peptide fragments of vaccinia virus C10L protein and a hypothesis on the role of this protein in the viral invasion. Peptides 23, 823–834.[CrossRef]
    [Google Scholar]
  34. Kluczyk, A., Cebrat, M., Zbozien-Pacamaj, R., Lisowski, M., Stefanowicz, P., Wieczorek, Z. & Siemion, I. Z. ( 2004; ). On the peptide-antipeptide interactions in interleukin-1 receptor system. Acta Biochim Pol 51, 57–66.
    [Google Scholar]
  35. Malyak, M., Guthridge, J. M., Hance, K. R., Dower, S. K., Freed, J. H. & Arend, W. P. ( 1998a; ). Characterization of a low molecular weight isoform of IL-1 receptor antagonist. J Immunol 161, 1997–2003.
    [Google Scholar]
  36. Malyak, M., Smith, M. F., Jr, Abel, A. A., Hance, K. R. & Arend, W. P. ( 1998b; ). The differential production of three forms of IL-1 receptor antagonist by human neutrophils and monocytes. J Immunol 161, 2004–2010.
    [Google Scholar]
  37. Ng, A., Tscharke, D. C., Reading, P. C. & Smith, G. L. ( 2001; ). The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. J Gen Virol 82, 2095–2105.
    [Google Scholar]
  38. Niles, E. G. & Seto, J. ( 1988; ). Vaccinia virus gene D8 encodes a virion transmembrane protein. J Virol 62, 3772–3778.
    [Google Scholar]
  39. Oh, J. & Broyles, S. S. ( 2005; ). Host cell nuclear proteins are recruited to cytoplasmic vaccinia virus replication complexes. J Virol 79, 12852–12860.[CrossRef]
    [Google Scholar]
  40. Panicali, D., Davis, S. W., Weinberg, R. L. & Paoletti, E. ( 1983; ). Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci U S A 80, 5364–5368.[CrossRef]
    [Google Scholar]
  41. Parkinson, J. E. & Smith, G. L. ( 1994; ). Vaccinia virus gene A36R encodes a M r 43–50 K protein on the surface of extracellular enveloped virus. Virology 204, 376–390.[CrossRef]
    [Google Scholar]
  42. Reading, P. C. & Smith, G. L. ( 2003; ). Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 77, 9960–9968.[CrossRef]
    [Google Scholar]
  43. Seet, B. T., Johnston, J. B., Brunetti, C. R., Barrett, J. W., Everett, H., Cameron, C., Sypula, J., Nazarian, S. H., Lucas, A. & McFadden, G. ( 2003; ). Poxviruses and immune evasion. Annu Rev Immunol 21, 377–423.[CrossRef]
    [Google Scholar]
  44. Shisler, J. L. & Jin, X. L. ( 2004; ). The vaccinia virus K1L gene product inhibits host NF-κB activation by preventing IκBα degradation. J Virol 78, 3553–3560.[CrossRef]
    [Google Scholar]
  45. Smith, G. L., Mackett, M. & Moss, B. ( 1983; ). Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302, 490–495.[CrossRef]
    [Google Scholar]
  46. Smith, V. P., Bryant, N. A. & Alcamí, A. ( 2000; ). Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81, 1223–1230.
    [Google Scholar]
  47. Smith, G. L., Vanderplasschen, A. & Law, M. ( 2002; ). The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83, 2915–2931.
    [Google Scholar]
  48. Smith, G. L., Murphy, B. J. & Law, M. ( 2003; ). Vaccinia virus motility. Annu Rev Microbiol 57, 323–342.[CrossRef]
    [Google Scholar]
  49. Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M. & VanSlyke, J. ( 1992; ). Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71, 145–152.[CrossRef]
    [Google Scholar]
  50. Stack, J., Haga, I. R., Schroder, M., Bartlett, N. W., Maloney, G., Reading, P. C., Fitzgerald, K. A., Smith, G. L. & Bowie, A. G. ( 2005; ). Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201, 1007–1018.[CrossRef]
    [Google Scholar]
  51. Symons, J. A., Adams, E., Tscharke, D. C., Reading, P. C., Waldmann, H. & Smith, G. L. ( 2002; ). The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83, 2833–2844.
    [Google Scholar]
  52. Tscharke, D. C. & Smith, G. L. ( 1999; ). A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80, 2751–2755.
    [Google Scholar]
  53. Tscharke, D. C., Reading, P. C. & Smith, G. L. ( 2002; ). Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83, 1977–1986.
    [Google Scholar]
  54. Twardzik, D. R., Brown, J. P., Ranchalis, J. E., Todaro, G. J. & Moss, B. ( 1985; ). Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. Proc Natl Acad Sci U S A 82, 5300–5304.[CrossRef]
    [Google Scholar]
  55. Watson, J. M., Lofquist, A. K., Rinehart, C. A., Olsen, J. C., Makarov, S. S., Kaufman, D. G. & Haskill, J. S. ( 1995; ). The intracellular IL-1 receptor antagonist alters IL-1-inducible gene expression without blocking exogenous signaling by IL-1 beta. J Immunol 155, 4467–4475.
    [Google Scholar]
  56. Wessendorf, J. H., Garfinkel, S., Zhan, X., Brown, S. & Maciag, T. ( 1993; ). Identification of a nuclear localization sequence within the structure of the human interleukin-1 alpha precursor. J Biol Chem 268, 22100–22104.
    [Google Scholar]
  57. Williamson, J. D., Reith, R. W., Jeffrey, L. J., Arrand, J. R. & Mackett, M. ( 1990; ). Biological characterization of recombinant vaccinia viruses in mice infected by the respiratory route. J Gen Virol 71, 2761–2767.[CrossRef]
    [Google Scholar]
  58. Wolff, B., Sanglier, J. J. & Wang, Y. ( 1997; ). Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 4, 139–147.[CrossRef]
    [Google Scholar]
  59. Yuwen, H., Cox, J. H., Yewdell, J. W., Bennink, J. R. & Moss, B. ( 1993; ). Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene. Virology 195, 732–744.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/004895-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/004895-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error