The influenza A virus spliced messenger RNA M mRNA3 is not required for viral replication in tissue culture Free

Abstract

Influenza A virus genome RNA segment 7 encodes three known mRNAs, two of which, M2 mRNA and M mRNA3, are derived by alternative splicing of the primary collinear mRNA transcript using alternative 5′ splice sites. The function of M mRNA3 is currently unknown, therefore we attempted to determine whether it is essential for virus replication. Recombinant viruses unable to produce M mRNA3 and/or M2 mRNA were created by mutating the shared 3′ splice site. Growth of the mutant viruses in M2-expressing MDCK cells was not significantly affected by the lack of M mRNA3. During the course of a wild-type virus infection, levels of M mRNA3 began to decrease while those of M2 mRNA increased, which may indicate a potential mechanism of alternative splicing control. These data suggest that neither M mRNA3 nor any potential protein product are essential for influenza virus replication in tissue culture.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/004739-0
2008-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/3097.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/004739-0&mimeType=html&fmt=ahah

References

  1. Adams M. D., Rudner D. Z., Rio D. C. 1996; Biochemistry and regulation of pre-mRNA splicing. Curr Opin Cell Biol 8:331–339 [CrossRef]
    [Google Scholar]
  2. Bohne J., Schambach A., Zychlinski D. 2007; New way of regulating alternative splicing in retroviruses: the promoter makes a difference. J Virol 81:3652–3656 [CrossRef]
    [Google Scholar]
  3. Bourmakina S. V., Garcia-Sastre A. 2005; The morphology and composition of influenza A virus particles are not affected by low levels of M1 and M2 proteins in infected cells. J Virol 79:7926–7932 [CrossRef]
    [Google Scholar]
  4. Cheung T. K., Guan Y., Ng S. S., Chen H., Wong C. H., Peiris J. S., Poon L. L. 2005; Generation of recombinant influenza A virus without M2 ion-channel protein by introduction of a point mutation at the 5′ end of the viral intron. J Gen Virol 86:1447–1454 [CrossRef]
    [Google Scholar]
  5. Filippova M., Johnson M. M., Bautista M., Filippov V., Fodor N., Tungteakkhun S. S., Williams K., Duerksen-Hughes P. J. 2007; The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. J Virol 81:4116–4129 [CrossRef]
    [Google Scholar]
  6. Fodor E., Devenish L., Engelhardt O. G., Palese P., Brownlee G. G., Garcia-Sastre A. 1999; Rescue of influenza A virus from recombinant DNA. J Virol 73:9679–9682
    [Google Scholar]
  7. Inglis S. C., Brown C. M. 1981; Spliced and unspliced RNAs encoded by virion RNA segment 7 of influenza virus. Nucleic Acids Res 9:2727–2740 [CrossRef]
    [Google Scholar]
  8. Inglis S. C., Brown C. M. 1984; Differences in the control of virus mRNA splicing during permissive or abortive infection with influenza A (fowl plague) virus. J Gen Virol 65:153–164 [CrossRef]
    [Google Scholar]
  9. Jurica M. S., Moore M. J. 2003; Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5–14 [CrossRef]
    [Google Scholar]
  10. Kammler S., Otte M., Hauber I., Kjems J., Hauber J., Schaal H. 2006; The strength of the HIV-1 3′ splice sites affects Rev function. Retrovirology 3:89 [CrossRef]
    [Google Scholar]
  11. Kraunus J., Zychlinski D., Heise T., Galla M., Bohne J., Baum C. 2006; Murine leukemia virus regulates alternative splicing through sequences upstream of the 5′ splice site. J Biol Chem 281:37381–37390 [CrossRef]
    [Google Scholar]
  12. Lamb R. A., Choppin P. W. 1981; Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus. Virology 112:729–737 [CrossRef]
    [Google Scholar]
  13. Lamb R. A., Lai C. J., Choppin P. W. 1981; Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc Natl Acad Sci U S A 78:4170–4174 [CrossRef]
    [Google Scholar]
  14. Lee Y. S., Seong B. L. 1996; Mutational analysis of influenza B virus RNA transcription in vitro . J Virol 70:1232–1236
    [Google Scholar]
  15. Lee Y. S., Seong B. L. 1998; Nucleotides in the panhandle structure of the influenza B virus virion RNA are involved in the specificity between influenza A and B viruses. J Gen Virol 79:673–681
    [Google Scholar]
  16. Lutzelberger M., Reinert L. S., Das A. T., Berkhout B., Kjems J. 2006; A novel splice donor site in the gag - pol gene is required for HIV-1 RNA stability. J Biol Chem 281:18644–18651 [CrossRef]
    [Google Scholar]
  17. Neumann G., Watanabe T., Ito H., Watanabe S., Goto H., Gao P., Hughes M., Perez D. R., Donis R. other authors 1999; Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 96:9345–9350 [CrossRef]
    [Google Scholar]
  18. Schaub M. C., Lopez S. R., Caputi M. 2007; Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J Biol Chem 282:13617–13626 [CrossRef]
    [Google Scholar]
  19. Shih S. R., Krug R. M. 1996; Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J 15:5415–5427
    [Google Scholar]
  20. Shih S. R., Nemeroff M. E., Krug R. M. 1995; The choice of alternative 5′ splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci U S A 92:6324–6328 [CrossRef]
    [Google Scholar]
  21. Smith C. W., Valcarcel J. 2000; Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25:381–388 [CrossRef]
    [Google Scholar]
  22. Tormanen H., Backstrom E., Carlsson A., Akusjarvi G. 2006; L4-33K, an adenovirus-encoded alternative RNA splicing factor. J Biol Chem 281:36510–36517 [CrossRef]
    [Google Scholar]
  23. Valcarcel J., Portela A., Ortin J. 1991; Regulated M1 mRNA splicing in influenza virus-infected cells. J Gen Virol 72:1301–1308 [CrossRef]
    [Google Scholar]
  24. Xing Y., Lee C. 2006; Alternative splicing and RNA selection pressure – evolutionary consequences for eukaryotic genomes. Nat Rev Genet 7:499–509 [CrossRef]
    [Google Scholar]
  25. Zhirnov O. P., Konakova T. E., Wolff T., Klenk H. D. 2002; NS1 protein of influenza A virus down-regulates apoptosis. J Virol 76:1617–1625 [CrossRef]
    [Google Scholar]
  26. Zhou Z., Licklider L. J., Gygi S. P., Reed R. 2002; Comprehensive proteomic analysis of the human spliceosome. Nature 419:182–185 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/004739-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/004739-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed