1887

Abstract

-Dystroglycan (-DG) is a ubiquitously expressed molecule that has been identified as a cellular receptor for lymphocytic choriomeningitis virus (LCMV) and other arenaviruses. Recently, it was demonstrated that LCMV receptor function is critically dependent on post-translational modifications, namely glycosylation. In particular, it was shown that -mannosylation, a rare type of mammalian -linked glycosylation, is important in determining the binding of LCMV to its cellular receptor. All studies carried out so far showed a dependence on glycosylation in LCMV receptor function . This work extended these studies to two models of -DG hypoglycosylation. The results confirm earlier findings on the dependence of carbohydrate modifications in LCMV receptor function. However, experiments in animal models showed that this dependence was only very weak . It is likely that alternative receptors or alternative entry pathways may account for this attenuated phenotype.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/004721-0
2008-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/11/2713.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/004721-0&mimeType=html&fmt=ahah

References

  1. Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., Freeman, G. J. & Ahmed, R. ( 2006; ). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687.[CrossRef]
    [Google Scholar]
  2. Barresi, R., Michele, D. E., Kanagawa, M., Harper, H. A., Dovico, S. A., Satz, J. S., Moore, S. A., Zhang, W., Schachter, H. & other authors ( 2004; ). LARGE can functionally bypass α-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10, 696–703.[CrossRef]
    [Google Scholar]
  3. Battegay, M., Cooper, S., Althage, A., Banziger, J., Hengartner, H. & Zinkernagel, R. M. ( 1991; ). Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods 33, 191–198.[CrossRef]
    [Google Scholar]
  4. Beyer, W. R., Popplau, D., Garten, W., von Laer, D. & Lenz, O. ( 2003; ). Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 77, 2866–2872.[CrossRef]
    [Google Scholar]
  5. Borrow, P. & Oldstone, M. B. ( 1994; ). Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology 198, 1–9.[CrossRef]
    [Google Scholar]
  6. Brancaccio, A., Schulthess, T., Gesemann, M. & Engel, J. ( 1995; ). Electron microscopic evidence for a mucin-like region in chick muscle α-dystroglycan. FEBS Lett 368, 139–142.[CrossRef]
    [Google Scholar]
  7. Buchmeier, M. J. & Oldstone, M. B. ( 1979; ). Protein structure of lymphocytic choriomeningitis virus: evidence for a cell-associated precursor of the virion glycopeptides. Virology 99, 111–120.[CrossRef]
    [Google Scholar]
  8. Buchmeier, M. J., Welsh, R. M., Dutko, F. J. & Oldstone, M. B. ( 1980; ). The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol 30, 275–331.
    [Google Scholar]
  9. Cao, W., Henry, M. D., Borrow, P., Yamada, H., Elder, J. H., Ravkov, E. V., Nichol, S. T., Compans, R. W., Campbell, K. P. & Oldstone, M. B. ( 1998; ). Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282, 2079–2081.[CrossRef]
    [Google Scholar]
  10. Chiba, A., Matsumura, K., Yamada, H., Inazu, T., Shimizu, T., Kusunoki, S., Kanazawa, I., Kobata, A. & Endo, T. ( 1997; ). Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve α-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of α-dystroglycan with laminin. J Biol Chem 272, 2156–2162.[CrossRef]
    [Google Scholar]
  11. Di Simone, C. & Buchmeier, M. J. ( 1995; ). Kinetics and pH dependence of acid-induced structural changes in the lymphocytic choriomeningitis virus glycoprotein complex. Virology 209, 3–9.[CrossRef]
    [Google Scholar]
  12. Di Simone, C., Zandonatti, M. A. & Buchmeier, M. J. ( 1994; ). Acidic pH triggers LCMV membrane fusion activity and conformational change in the glycoprotein spike. Virology 198, 455–465.[CrossRef]
    [Google Scholar]
  13. Ervasti, J. M. & Campbell, K. P. ( 1991; ). Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131.[CrossRef]
    [Google Scholar]
  14. Ervasti, J. M. & Campbell, K. P. ( 1993; ). A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122, 809–823.[CrossRef]
    [Google Scholar]
  15. Fujimura, K., Sawaki, H., Sakai, T., Hiruma, T., Nakanishi, N., Sato, T., Ohkura, T. & Narimatsu, H. ( 2005; ). LARGE2 facilitates the maturation of α-dystroglycan more effectively than LARGE. Biochem Biophys Res Commun 329, 1162–1171.[CrossRef]
    [Google Scholar]
  16. Grewal, P. K., Holzfeind, P. J., Bittner, R. E. & Hewitt, J. E. ( 2001; ). Mutant glycosyltransferase and altered glycosylation of α-dystroglycan in the myodystrophy mouse. Nat Genet 28, 151–154.[CrossRef]
    [Google Scholar]
  17. Grewal, P. K., McLaughlan, J. M., Moore, C. J., Browning, C. A. & Hewitt, J. E. ( 2005; ). Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies. Glycobiology 15, 912–923.[CrossRef]
    [Google Scholar]
  18. Holt, K. H., Crosbie, R. H., Venzke, D. P. & Campbell, K. P. ( 2000; ). Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett 468, 79–83.[CrossRef]
    [Google Scholar]
  19. Holzfeind, P. J., Grewal, P. K., Reitsamer, H. A., Kechvar, J., Lassmann, H., Hoeger, H., Hewitt, J. E. & Bittner, R. E. ( 2002; ). Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Largemyd mouse defines a natural model for glycosylation-deficient muscle–eye–brain disorders. Hum Mol Genet 11, 2673–2687.[CrossRef]
    [Google Scholar]
  20. Ibraghimov-Beskrovnaya, O., Ervasti, J. M., Leveille, C. J., Slaughter, C. A., Sernett, S. W. & Campbell, K. P. ( 1992; ). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702.[CrossRef]
    [Google Scholar]
  21. Imperiali, M., Thoma, C., Pavoni, E., Brancaccio, A., Callewaert, N. & Oxenius, A. ( 2005; ). O Mannosylation of α-dystroglycan is essential for lymphocytic choriomeningitis virus receptor function. J Virol 79, 14297–14308.[CrossRef]
    [Google Scholar]
  22. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S. & Steinman, R. M. ( 1992; ). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176, 1693–1702.[CrossRef]
    [Google Scholar]
  23. Kanagawa, M., Saito, F., Kunz, S., Yoshida-Moriguchi, T., Barresi, R., Kobayashi, Y. M., Muschler, J., Dumanski, J. P., Michele, D. E. & other authors ( 2004; ). Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117, 953–964.[CrossRef]
    [Google Scholar]
  24. Kunz, S., Edelmann, K. H., de la Torre, J. C., Gorney, R. & Oldstone, M. B. ( 2003; ). Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology 314, 168–178.[CrossRef]
    [Google Scholar]
  25. Kunz, S., Sevilla, N., Rojek, J. M. & Oldstone, M. B. ( 2004; ). Use of alternative receptors different than α-dystroglycan by selected isolates of lymphocytic choriomeningitis virus. Virology 325, 432–445.[CrossRef]
    [Google Scholar]
  26. Kunz, S., Rojek, J. M., Kanagawa, M., Spiropoulou, C. F., Barresi, R., Campbell, K. P. & Oldstone, M. B. ( 2005; ). Posttranslational modification of α-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J Virol 79, 14282–14296.[CrossRef]
    [Google Scholar]
  27. Lamers, M. C., De Groot, E. R. & Roos, D. ( 1981; ). Phagocytosis and degradation of DNA–anti-DNA complexes by human phagocytes II. Influence of the size of the complexes. Eur J Immunol 11, 764–768.[CrossRef]
    [Google Scholar]
  28. Levedakou, E. N., Chen, X. J., Soliven, B. & Popko, B. ( 2005; ). Disruption of the mouse Large gene in the enr and myd mutants results in nerve, muscle, and neuromuscular junction defects. Mol Cell Neurosci 28, 757–769.[CrossRef]
    [Google Scholar]
  29. Liu, J., Ball, S. L., Yang, Y., Mei, P., Zhang, L., Shi, H., Kaminski, H. J., Lemmon, V. P. & Hu, H. ( 2006; ). A genetic model for muscle–eye–brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev 123, 228–240.[CrossRef]
    [Google Scholar]
  30. Longman, C., Brockington, M., Torelli, S., Jimenez-Mallebrera, C., Kennedy, C., Khalil, N., Feng, L., Saran, R. K., Voit, T. & other authors ( 2003; ). Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of α-dystroglycan. Hum Mol Genet 12, 2853–2861.[CrossRef]
    [Google Scholar]
  31. Michele, D. E., Barresi, R., Kanagawa, M., Saito, F., Cohn, R. D., Satz, J. S., Dollar, J., Nishino, I., Kelley, R. I. & other authors ( 2002; ). Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies. Nature 418, 417–422.[CrossRef]
    [Google Scholar]
  32. Ochsenbein, A. F., Fehr, T., Lutz, C., Suter, M., Brombacher, F., Hengartner, H. & Zinkernagel, R. M. ( 1999; ). Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159.[CrossRef]
    [Google Scholar]
  33. Peyrard, M., Seroussi, E., Sandberg-Nordqvist, A. C., Xie, Y. G., Han, F. Y., Fransson, I., Collins, J., Dunham, I., Kost-Alimova, M. & other authors ( 1999; ). The human LARGE gene from 22q12.3-q13.1 is a new, distinct member of the glycosyltransferase gene family. Proc Natl Acad Sci U S A 96, 598–603.[CrossRef]
    [Google Scholar]
  34. Rambukkana, A., Yamada, H., Zanazzi, G., Mathus, T., Salzer, J. L., Yurchenco, P. D., Campbell, K. P. & Fischetti, V. A. ( 1998; ). Role of α-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282, 2076–2079.[CrossRef]
    [Google Scholar]
  35. Riviere, Y., Ahmed, R., Southern, P. J., Buchmeier, M. J., Dutko, F. J. & Oldstone, M. B. ( 1985; ). The S RNA segment of lymphocytic choriomeningitis virus codes for the nucleoprotein and glycoproteins 1 and 2. J Virol 53, 966–968.
    [Google Scholar]
  36. Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E. H., McCarroll, S. A. & other authors ( 2007; ). Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918.[CrossRef]
    [Google Scholar]
  37. Salvato, M. S. & Shimomaye, E. M. ( 1989; ). The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology 173, 1–10.[CrossRef]
    [Google Scholar]
  38. Salvato, M., Shimomaye, E. & Oldstone, M. B. ( 1989; ). The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase. Virology 169, 377–384.[CrossRef]
    [Google Scholar]
  39. Salvato, M. S., Schweighofer, K. J., Burns, J. & Shimomaye, E. M. ( 1992; ). Biochemical and immunological evidence that the 11 kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res 22, 185–198.[CrossRef]
    [Google Scholar]
  40. Sevilla, N., Kunz, S., Holz, A., Lewicki, H., Homann, D., Yamada, H., Campbell, K. P., de La Torre, J. C. & Oldstone, M. B. ( 2000; ). Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 192, 1249–1260.[CrossRef]
    [Google Scholar]
  41. Singh, M. K., Fuller-Pace, F. V., Buchmeier, M. J. & Southern, P. J. ( 1987; ). Analysis of the genomic L RNA segment from lymphocytic choriomeningitis virus. Virology 161, 448–456.[CrossRef]
    [Google Scholar]
  42. Smelt, S. C., Borrow, P., Kunz, S., Cao, W., Tishon, A., Lewicki, H., Campbell, K. P. & Oldstone, M. B. ( 2001; ). Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor α-dystroglycan correlate with viral tropism and disease kinetics. J Virol 75, 448–457.[CrossRef]
    [Google Scholar]
  43. Spiropoulou, C. F., Kunz, S., Rollin, P. E., Campbell, K. P. & Oldstone, M. B. ( 2002; ). New World arenavirus clade C, but not clade A and B viruses, utilizes α-dystroglycan as its major receptor. J Virol 76, 5140–5146.[CrossRef]
    [Google Scholar]
  44. Waldburger, J. M., Suter, T., Fontana, A., Acha-Orbea, H. & Reith, W. ( 2001; ). Selective abrogation of major histocompatibility complex class II expression on extrahematopoietic cells in mice lacking promoter IV of the class II transactivator gene. J Exp Med 194, 393–406.[CrossRef]
    [Google Scholar]
  45. Weigle, W. O. ( 1973; ). Immunological unresponsiveness. Adv Immunol 16, 61–122.
    [Google Scholar]
  46. Wilson, I. B., Gavel, Y. & von Heijne, G. ( 1991; ). Amino acid distributions around O-linked glycosylation sites. Biochem J 275, 529–534.
    [Google Scholar]
  47. Wolint, P., Betts, M. R., Koup, R. A. & Oxenius, A. ( 2004; ). Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells. J Exp Med 199, 925–936.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/004721-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/004721-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error