1887

Abstract

The unprecedented emergence in Asia of multiple avian influenza virus (AIV) subtypes with a broad host range poses a major challenge in the design of vaccination strategies that are both effective and available in a timely manner. The present study focused on the protective effects of a genetically modified AIV as a source for the preparation of vaccines for epidemic and pandemic influenza. It has previously been demonstrated that a live attenuated AIV based on the internal backbone of influenza A/Guinea fowl/Hong Kong/WF10/99 (H9N2), called WF10, is effective at protecting poultry species against low- and high-pathogenicity influenza strains. More importantly, this live attenuated virus provided effective protection when administered . In order to characterize the WF10 backbone further for use in epidemic and pandemic influenza vaccines, this study evaluated its protective effects in mice. Intranasal inoculation of modified attenuated viruses in mice provided adequate protective immunity against homologous lethal challenges with both the wild-type influenza A/WSN/33 (H1N1) and A/Vietnam/1203/04 (H5N1) viruses. Adequate heterotypic immunity was also observed in mice vaccinated with modified attenuated viruses carrying H7N2 surface proteins. The results presented in this report suggest that the internal genes of a genetically modified AIV confer similar protection in a mouse model and thus could be used as a master donor strain for the generation of live attenuated vaccines for epidemic and pandemic influenza.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/004143-0
2008-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/11/2682.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/004143-0&mimeType=html&fmt=ahah

References

  1. Amonsin A., Songserm T., Chutinimitkul S., Jam-On R., Sae-Heng N., Pariyothorn N., Payungporn S., Theamboonlers A., Poovorawan Y. 2007; Genetic analysis of influenza A virus (H5N1) derived from domestic cat and dog in Thailand. Arch Virol 152:1925–1933 [CrossRef]
    [Google Scholar]
  2. Belshe R. B. 2004; Current status of live attenuated influenza virus vaccine in the US. Virus Res 103:177–185 [CrossRef]
    [Google Scholar]
  3. Capua I., Alexander D. J. 2002; Avian influenza and human health. Acta Trop 83:1–6
    [Google Scholar]
  4. Capua I., Alexander D. J. 2004; Avian influenza: recent developments. Avian Pathol 33:393–404 [CrossRef]
    [Google Scholar]
  5. Capua I., Marangon S. 2004; Vaccination for avian influenza in Asia. Vaccine 22:4137–4138 [CrossRef]
    [Google Scholar]
  6. Capua I., Terregino C., Cattoli G., Mutinelli F., Rodriguez J. F. 2003; Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza. Avian Pathol 32:47–55 [CrossRef]
    [Google Scholar]
  7. Choi Y. K., Ozaki H., Webby R. J., Webster R. G., Peiris J. S., Poon L., Butt C., Leung Y. H., Guan Y. 2004; Continuing evolution of H9N2 influenza viruses in Southeastern China. J Virol 78:8609–8614 [CrossRef]
    [Google Scholar]
  8. Guan Y., Shortridge K. F., Krauss S., Chin P. S., Dyrting K. C., Ellis T. M., Webster R. G., Peiris M. 2000; H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 74:9372–9380 [CrossRef]
    [Google Scholar]
  9. Harper S. A., Fukuda K., Uyeki T. M., Cox N. J., Bridges C. B. 2004; Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 53:1–40
    [Google Scholar]
  10. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G. 2000; A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97:6108–6113 [CrossRef]
    [Google Scholar]
  11. Horimoto T., Kawaoka Y. 2001; Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev 14:129–149 [CrossRef]
    [Google Scholar]
  12. Jin H., Zhou H., Lu B., Kemble G. 2004; Imparting temperature sensitivity and attenuation in ferrets to A/Puerto Rico/8/34 influenza virus by transferring the genetic signature for temperature sensitivity from cold-adapted A/Ann Arbor/6/60. J Virol 78:995–998 [CrossRef]
    [Google Scholar]
  13. Lin Y. P., Shaw M., Gregory V., Cameron K., Lim W., Klimov A., Subbarao K., Guan Y., Krauss S. other authors 2000; Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci U S A 97:9654–9658 [CrossRef]
    [Google Scholar]
  14. Lu X., Edwards L. E., Desheva J. A., Nguyen D. C., Rekstin A., Stephenson I., Szretter K., Cox N. J., Rudenko L. G. other authors 2006; Cross-protective immunity in mice induced by live-attenuated or inactivated vaccines against highly pathogenic influenza A (H5N1) viruses. Vaccine 24:6588–6593 [CrossRef]
    [Google Scholar]
  15. Maassab H. F. 1967; Adaptation and growth characteristics of influenza virus at 25 °C. Nature 213:612–614 [CrossRef]
    [Google Scholar]
  16. Murphy B. R., Sly D. L., Tierney E. L., Hosier N. T., Massicot J. G., London W. T., Chanock R. M., Webster R. G., Hinshaw V. S. 1982; Reassortant virus derived from avian and human influenza A viruses is attenuated and immunogenic in monkeys. Science 218:1330–1332 [CrossRef]
    [Google Scholar]
  17. Murphy B. R., Park E. J., Gottlieb P., Subbarao K. 1997; An influenza A live attenuated reassortant virus possessing three temperature-sensitive mutations in the PB2 polymerase gene rapidly loses temperature sensitivity following replication in hamsters. Vaccine 15:1372–1378 [CrossRef]
    [Google Scholar]
  18. Neumann G., Kawaoka Y. 2001; Reverse genetics of influenza virus. Virology 287:243–250 [CrossRef]
    [Google Scholar]
  19. Peiris M., Yuen K. Y., Leung C. W., Chan K. H., Ip P. L., Lai R. W., Orr W. K., Shortridge K. F. 1999; Human infection with influenza H9N2. Lancet 354:916–917 [CrossRef]
    [Google Scholar]
  20. Peiris J. S., Guan Y., Markwell D., Ghose P., Webster R. G., Shortridge K. F. 2001; Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment?. J Virol 75:9679–9686 [CrossRef]
    [Google Scholar]
  21. Perez D. R., Lim W., Seiler J. P., Yi G., Peiris M., Shortridge K. F., Webster R. G. 2003a; Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. J Virol 77:3148–3156 [CrossRef]
    [Google Scholar]
  22. Perez D. R., Webby R. J., Hoffmann E., Webster R. G. 2003b; Land-based birds as potential disseminators of avian mammalian reassortant influenza A viruses. Avian Dis 47:1114–1117 [CrossRef]
    [Google Scholar]
  23. Reed L. J., Muench H. 1938; A simple method for estimating 50 percent endpoints. Am J Hyg 37:493
    [Google Scholar]
  24. Sears S. D., Clements M. L., Betts R. F., Maassab H. F., Murphy B. R., Snyder M. H. 1988; Comparison of live, attenuated H1N1 and H3N2 cold-adapted and avian–human influenza A reassortant viruses and inactivated virus vaccine in adults. J Infect Dis 158:1209–1219 [CrossRef]
    [Google Scholar]
  25. Song H., Nieto G. R., Perez D. R. 2007; A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates. J Virol 81:9238–9248 [CrossRef]
    [Google Scholar]
  26. Songserm T., Amonsin A., Jam-on R., Sae-Heng N., Pariyothorn N., Payungporn S., Theamboonlers A., Chutinimitkul S., Thanawongnuwech R., Poovorawan Y. 2006a; Fatal avian influenza A H5N1 in a dog. Emerg Infect Dis 12:1744–1747 [CrossRef]
    [Google Scholar]
  27. Songserm T., Amonsin A., Jam-on R., Sae-Heng N., Meemak N., Pariyothorn N., Payungporn S., Theamboonlers A., Poovorawan Y. 2006b; Avian influenza H5N1 in naturally infected domestic cat. Emerg Infect Dis 12:681–683 [CrossRef]
    [Google Scholar]
  28. Steinhoff M. C., Halsey N. A., Wilson M. H., Burns B. A., Samorodin R. K., Fries L. F., Murphy B. R., Clements M. L. 1990; Comparison of live attenuated cold-adapted and avian–human influenza A/Bethesda/85 (H3N2) reassortant virus vaccines in infants and children. J Infect Dis 162:394–401 [CrossRef]
    [Google Scholar]
  29. Steinhoff M. C., Halsey N. A., Fries L. F., Wilson M. H., King J., Burns B. A., Samorodin R. K., Perkis V., Murphy B. R., Clements M. L. 1991; The A/Mallard/6750/78 avian–human, but not the A/Ann Arbor/6/60 cold-adapted, influenza A/Kawasaki/86 (H1N1) reassortant virus vaccine retains partial virulence for infants and children. J Infect Dis 163:1023–1028 [CrossRef]
    [Google Scholar]
  30. Subbarao K., Webster R. G., Kawaoka Y., Murphy B. R. 1995; Are there alternative avian influenza viruses for generation of stable attenuated avian-human influenza A reassortant viruses?. Virus Res 39:105–118 [CrossRef]
    [Google Scholar]
  31. Wan H., Perez D. R. 2007; Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol 81:5181–5191 [CrossRef]
    [Google Scholar]
  32. Webster R. G., Hulse-Post D. J., Sturm-Ramirez K. M., Guan Y., Peiris M., Smith G., Chen H. 2007; Changing epidemiology and ecology of highly pathogenic avian H5N1 influenza viruses. Avian Dis 51:269–272 [CrossRef]
    [Google Scholar]
  33. Xu C., Fan W., Wei R., Zhao H. 2004; Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus. Microbes Infect 6:919–925 [CrossRef]
    [Google Scholar]
  34. Zangwill K. M., Belshe R. B. 2004; Safety and efficacy of trivalent inactivated influenza vaccine in young children: a summary for the new era of routine vaccination. Pediatr Infect Dis J 23:189–197 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/004143-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/004143-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error