1887

Abstract

The nucleocapsid (N) protein of hantaviruses (family ) is the most abundant component of the virion; it encapsidates genomic RNA segments and participates in viral genome transcription and replication, as well as in virus assembly. During RNA encapsidation, the N protein forms intermediate trimers and then oligomers via ‘head-to-head, tail-to-tail’ interactions. In previous work, using Tula hantavirus (TULV) N protein as a model, it was demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein and that the hydrophobic ‘a’ residues from the second -helix are especially important. Here, the importance of charged amino acid residues located within the coiled-coil for trimer formation and oligomerization was analysed. To predict the interacting surfaces of the monomers, the previous model of TULV coiled-coils was first upgraded, taking advantage of the recently published crystal structure of the N-terminal coiled-coil of the Sin Nombre virus N protein. The results obtained using a mammalian two-hybrid assay suggested that conserved, charged amino acid residues within the coiled-coil make a substantial contribution to N protein oligomerization. This contribution probably involves (i) the formation of interacting surfaces of the N monomers (residues D35 and D38, located at the tip of the coiled-coil loop, and R63 appear particularly important) and (ii) stabilization of the coiled-coil via intramolecular ionic bridging (with E55 as a key player). It is hypothesized that the tips of the coiled-coils are the first to come into direct contact and thus to initiate tight packing of the three structures.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/004044-0
2008-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/9/2167.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/004044-0&mimeType=html&fmt=ahah

References

  1. Albertini A. A., Schoehn G., Weissenhorn W., Ruigrok R. W. 2008; Structural aspects of rabies virus replication. Cell Mol Life Sci 65:282–294 [CrossRef]
    [Google Scholar]
  2. Alfadhli A., Love Z., Arvidson B., Seeds J., Willey J., Barklis E. 2001; Hantavirus nucleocapsid protein oligomerization. J Virol 75:2019–2023 [CrossRef]
    [Google Scholar]
  3. Alfadhli A., Steel E., Finlay L., Bachinger H. P., Barklis E. 2002; Hantavirus nucleocapsid protein coiled-coil domains. J Biol Chem 277:27103–27108 [CrossRef]
    [Google Scholar]
  4. Alminaite A., Halttunen V., Kumar V., Vaheri A., Holm L., Plyusnin A. 2006; Oligomerization of hantavirus nucleocapsid protein: analysis of the N-terminal coiled-coil domain. J Virol 80:9073–9081 [CrossRef]
    [Google Scholar]
  5. Boudko S. P., Kuhn R. J., Rossmann M. G. 2007; The coiled-coil domain structure of the Sin Nombre virus nucleocapsid protein. J Mol Biol 366:1538–1544 [CrossRef]
    [Google Scholar]
  6. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. 1994; Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43 [CrossRef]
    [Google Scholar]
  7. Burkhard P., Stetefeld J., Strelkov S. V. 2001; Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11:82–88 [CrossRef]
    [Google Scholar]
  8. Chen J., Skehe J. J., Wiley D. C. 1999; N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA2 subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci U S A 96:8967–8972 [CrossRef]
    [Google Scholar]
  9. Comeau S. R., Gatchell D. W., Vajda S., Camacho C. J. 2004; ClusPro : an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20:45–50 [CrossRef]
    [Google Scholar]
  10. DiCarlo A., Möller P., Lander A., Kolesnikova L., Becker S. 2007; Nucleocapsid formation and RNA synthesis of Marburg virus is dependent on two coiled coil motifs in the nucleoprotein. Virol J 4:105 [CrossRef]
    [Google Scholar]
  11. Hale B. G., Batty I. H., Downes C. P., Randall R. E. 2008; Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation. J Biol Chem 283:1372–1380 [CrossRef]
    [Google Scholar]
  12. Holm L., Sander C. 1992; Evaluation of protein models by atomic solvation preference. J Mol Biol 225:93–105 [CrossRef]
    [Google Scholar]
  13. Jääskeläinen K. M., Kaukinen P., Minskaya E. S., Plyusnina A., Vapalahti O., Elliott R. M., Weber F., Vaheri A., Plyusnin A. 2007; Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter. J Med Virol 79:1527–1536 [CrossRef]
    [Google Scholar]
  14. Kaukinen P., Koistinen V., Vapalahti O., Vaheri A., Plyusnin A. 2001; Interaction between molecules of hantavirus nucleocapsid protein. J Gen Virol 82:1845–1853
    [Google Scholar]
  15. Kaukinen P., Vaheri A., Plyusnin A. 2003a; Non-covalent interaction between nucleocapsid protein of Tula hantavirus and small ubiquitin-related modifier-1, SUMO-1. Virus Res 92:37–45 [CrossRef]
    [Google Scholar]
  16. Kaukinen P., Vaheri A., Plyusnin A. 2003b; Mapping of the regions involved in homotypic interactions of Tula hantavirus N protein. J Virol 77:10910–10916 [CrossRef]
    [Google Scholar]
  17. Kaukinen P., Kumar V., Tulimaki K., Engelhardt P., Vaheri A., Plyusnin A. 2004; Oligomerization of hantavirus N protein: C-terminal α -helices interact to form a shared hydrophobic space. J Virol 78:13669–13677 [CrossRef]
    [Google Scholar]
  18. Kaukinen P., Vaheri A., Plyusnin A. 2005; Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 150:1693–1713 [CrossRef]
    [Google Scholar]
  19. Kukkonen S. K. J., Vaheri A., Plyusnin A. 2004; Tula hantavirus L protein is a 250 kDa perinuclear membrane-associated protein. J Gen Virol 85:1181–1189 [CrossRef]
    [Google Scholar]
  20. Li X. D., Makela T. P., Guo D., Soliymani R., Koistinen V., Vapalahti O., Vaheri A., Lankinen H. 2002; Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx. J Gen Virol 83:759–766
    [Google Scholar]
  21. Lupas A. 1996; Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382 [CrossRef]
    [Google Scholar]
  22. Maeda A., Lee B. H., Yoshimatsu K., Saijo M., Kurane I., Arikawa J., Morikawa S. 2003; The intracellular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Virology 305:288–297 [CrossRef]
    [Google Scholar]
  23. Mir M. A., Panganiban A. T. 2004; Trimeric hantavirus nucleocapsid protein binds specifically to the viral RNA panhandle. J Virol 78:8281–8288 [CrossRef]
    [Google Scholar]
  24. Möller P., Pariente N., Klenk H. D., Becker S. 2005; Homo-oligomerization of Marburgvirus VP35 is essential for its function in replication and transcription. J Virol 79:14876–14886 [CrossRef]
    [Google Scholar]
  25. Nichol S. T., Beaty B. J., Elliott R. M., Goldbach R., Plyusnin A., Schmaljohn C. S., Tesh R. B. 2005; Bunyaviridae . In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp 695–716Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. Amsterdam: Elsevier Academic Press;
    [Google Scholar]
  26. Ramachandran G. N., Ramakrishnan C., Sasisekharan V. 1963; Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99 [CrossRef]
    [Google Scholar]
  27. Ravkov E. V., Compans R. W. 2001; Hantavirus nucleocapsid protein is expressed as a membrane-associated protein in the perinuclear region. J Virol 75:1808–1815 [CrossRef]
    [Google Scholar]
  28. Rost B. 1997; Protein structures sustain evolutionary drift. Fold Des 2:S19–S24 [CrossRef]
    [Google Scholar]
  29. Sali A., Blundel T. L. 1993; Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815 [CrossRef]
    [Google Scholar]
  30. Sander C., Schneider R. 1991; Database of homology-derived structures and the structural meaning of sequence alignment. Proteins 9:56–68 [CrossRef]
    [Google Scholar]
  31. Severson W., Xu X., Kuhn M., Senutovitch N., Thokala M., Ferron F., Longhi S., Canard B., Jonsson C. B. 2005; Essential amino acids of the Hantaan virus N protein in its interaction with RNA. J Virol 79:10032–10039 [CrossRef]
    [Google Scholar]
  32. Spencer K. A., Hiscox J. A. 2006; Characterisation of the RNA binding properties of the coronavirus infectious bronchitis virus nucleocapsid protein amino-terminal region. FEBS Lett 580:5993–5998 [CrossRef]
    [Google Scholar]
  33. Staker B. L., Hjerrild K., Feese M. D., Behnke C. A., Burgin A. B. Jr, Stewart L. J. 2002; The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 99:15387–15392 [CrossRef]
    [Google Scholar]
  34. van Marle G., Luytjes W., van der Most R. G., van der Straaten T., Spaan W. J. 1995; Regulation of coronavirus mRNA transcription. J Virol 69:7851–7856
    [Google Scholar]
  35. Vapalahti O., Mustonen J., Lundkvist A., Henttonen H., Plyusnin A., Vaheri A. 2003; Hantavirus infections in Europe. Lancet Infect Dis 3:653–661 [CrossRef]
    [Google Scholar]
  36. Vriend G. 1990; A molecular modeling and drug design program. J Mol Graph 8:52–56 [CrossRef]
    [Google Scholar]
  37. Xu X., Severson W., Villegas N., Schmaljohn C. S., Jonsson C. B. 2002; The RNA binding domain of the Hantaan virus N protein maps to a central, conserved region. J Virol 76:3301–3308 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/004044-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/004044-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error